17. RQ is the same as PS.
PS = -1 + 4x
RQ = 3x + 3
-1 + 4x = 3x + 3
4x = 3x + 4
x = 4
Now plug that into RQ.
3(4) + 3 = RQ
15 = RQ
18. Angles G and E are equal to each other.
G = 5x - 9
E = 3x + 11
5x - 9 = 3x + 11
5x = 3x + 20
2x = 20
x = 10
Plug that x into G.
5(10) - 9
41 = G
19. TE and EV are equal to each other.
TE = 4 + 2x
EV = 4x - 4
4 + 2x = 4x - 4
2x = 4x - 8
-2x = -8
x = 4
Plug that into TE.
4 + 2(4)
12 = TE
20. DB and BF are equal.
DB = 5x - 1
BF = 5 + 3x
5x - 1 = 5 + 3x
5x = 6 + 3x
2x = 6
x = 3
Plug that into DB.
5(3) - 1
14 = DB
Answer:
The volume of the cone is 12936 cubic mm.
Step-by-step explanation:
Given
Circumference of base = 132 mm
Height of the cone = 28 mm
Solution
Formula of circumference =
= 132 mm

Now volume of cone = 
on substituting the value of r and h we get ;

thus volume of cone is 12936 cubic mm.
Answer:
a(-1)^(n-1).
Step-by-step explanation:
This is a Geometric Sequence with common ratio r = -1.
The general term is a(-1)^(n-1).
Answer:
<h2>3 months</h2>
Step-by-step explanation:
Answer:
B: II, IV, I, III
Step-by-step explanation:
We believe the proof <em>statement — reason</em> pairs need to be ordered as shown below
Point F is a midpoint of Line segment AB Point E is a midpoint of Line segment AC — given
Draw Line segment BE Draw Line segment FC — by Construction
Point G is the point of intersection between Line segment BE and Line segment FC — Intersecting Lines Postulate
Draw Line segment AG — by Construction
Point D is the point of intersection between Line segment AG and Line segment BC — Intersecting Lines Postulate
Point H lies on Line segment AG such that Line segment AG ≅ Line segment GH — by Construction
__
II Line segment FG is parallel to line segment BH and Line segment GE is parallel to line segment HC — Midsegment Theorem
IV Line segment GC is parallel to line segment BH and Line segment BG is parallel to line segment HC — Substitution
I BGCH is a parallelogram — Properties of a Parallelogram (opposite sides are parallel)
III Line segment BD ≅ Line segment DC — Properties of a Parallelogram (diagonals bisect each other)
__
Line segment AD is a median Definition of a Median