1a) A = 4πpw
/4πw = /4πw
A / 4πw = p
1b) A = 4πpw
22 = 4πp(2)
p = 11/4π (≈0.87)
2a) P = 2πr + 2x
P - 2x = 2πr
/2π /2π
P-2x / 2π = r
2b) P = 2πr + 2x
440 = 2πr + 2(110)
r = 110/π (≈35.014)
Are you looking for the length from E to F?
<span> x^2+8x+12 = </span>(x + 6)(x + 2)
Answer:
Step-by-step explanation:
∠1 and 85 are supplementary
m∠1 = 180 - 85 = 95°
He actually borrowed P=21349-3000=18349 (present value)
Assume the monthly interest is i.
then future value due to loan:
F1=P(1+i)^n=18349(1+i)^(5*12)=18349(1+i)^60
future value from monthly payment of A=352
F2=A((1+i)^n-1)/i=352((1+i)^60-1)/i
Since F1=F2 for the same loan, we have
18349(1+i)^60=352((1+i)^60-1)/i
Simplify notation by defining R=1+i, then
18349(R^60)-352(R^60-1)/(R-1)=0
Simplify further by multiplication by (R-1)
f(R)=18349*R^60*(R-1)-352(R^60-1)=0
Solve for R by trial and error, or by iteration to get R=1.004732
The APR is therefore
12*(1.004732-1)=0.056784, or 5.678% approx.