Answer:
We know that in a triangle, if two angles have equal measures, then the sides opposite to them are equal in length. Thus, the length of side AB is 6 units
Answer:

Step-by-step explanation:
Since the equation is parallel, this means that the slope remains the same which is 0.5.
The remaining thing to do is to find b or y-intercept. To do that, the point (6,-2) and the slope of 0.5 will be used.

When solving for b, it will equal to -5.
Therefore the new equation that is parallel is 
1. n^2 -8n +16 = 25
Subtract 25 from both sides
n^2 - 8n + 16 - 25 = 0
Simplify
n^2 - 8n - 9 =0
Factor
(n-9)(n+1) = 0
Solve for n
n-9 = 0, n = 9
n+1 = 0, n = -1
Solution: 9,-1
2. C = b^2/25
Multiply both sides by 25:
25c = b^2
Take square root of both sides
b = +/-√25c
Simplify:
b = 5√C, -5√C
3. d = 16t^2 +12t
subtract d from both side:
16t^2 + 12t -d =0
Use quadratic formula to solve:
t = (3 +/-√(9-4d))/8
4. 5w^2 +10w =40
Subtract 40 from both side:
5w^2 + 10w -40 = 0
Factor:
5(w-2)(w+4)=0
Divide both sides by 5:
(w-2)(w+4)=0
Solve for w:
w-2 = 0, w = 2
w+4=0, w = -4
Solution: 2,-4
A right triangle has one leg with unknown length, the other leg with length of 5 m, and the hypotenuse with length 13 times sqrt 5 m.
We can use the Pythagorean formula to find the other leg of the right triangle.
a²+b²=c²
Where a and b are the legs of the triangle and c is the hypotenuse.
According to the given problem,
one leg: a= 5m and hypotenuse: c=13√5 m.
So, we can plug in these values in the above equation to get the value of unknown side:b. Hence,
5²+b²=(13√5)²
25 + b² = 13²*(√5)²
25 + b² = 169* 5
25+ b² = 845
25 + b² - 25 = 845 - 25
b² = 820
b =√ 820
b = √(4*205)
b = √4 *√205
b = 2√205
b= 2* 14.32
b = 28.64
So, b= 28.6 (Rounded to one decimal place)
Hence, the exact length of the unknown leg is 2√205m or 28.6 m (approximately).
Answer:
<em>Negative</em>
Step-by-step explanation: