X²+3x-21=0
1) we solve this square equation:
x=[-3⁺₋√(9+84)] / 2=(-3⁺₋√93)/2
We have two solutions:
x₁=(-3-√93)/2
x₂=(-3+√93)/2
2) we compute the product of the 2 solutions found.
[(-3-√93)/2][(-3+√93)/2] =(-3-√93)(-3+√93) / 4=
=(9-93)/4=-84/4=-21
Answer: the product of the 2 solutions of this equation is -21
Sine, Cosine, Tangent, Cosecant (opposite of Sine), Secant (opposite of Cosine), and Cotangent (opposite of Tangent)
Answer:
Part a) 
Part b) 
Step-by-step explanation:
Part a) Write an equation for T (d)
Let
d ----> the number of days
T ---> the time in minutes of the treadmill
we know that
The linear equation in slope intercept form is equal to

where
m is the slope or unit rate
b is the y-intercept or initial value
In this problem we have
The slope or unit rate is

The y-intercept or initial value is

substitute

Part b) Find T (6), the minutes he will spend on the treadmill on day 6
For d=6
substitute in the equation and solve for T


Whats the answers it doesn’t show for me
1+38*225(12/77)
1+38*225*6.41
1*8550*6.41
1+54,805.5
54,806.5
Use pemdas to solve it