The values are a = 7, b = -9, c = -18.
<u>Step-by-step explanation:</u>
The given quadratic equation is 
The general form of the quadratic equation is 
where,
- a is the coefficient of x².
- b is the coefficient of x.
- c is the constant term.
Now, you have to modify the given quadratic equation similar to the general form of quadratic equation.
So, bring the constant term 18 to the left side of the equation for equating it to zero.
⇒ 
Compare the above equation with general form 
⇒ a = 7
⇒ b = -9
⇒ c = -18
Therefore, the values of a, b, and c are 7, -9 and -18.
Answer:
b
Step-by-step explanation:
Answer:
The first one is not a function
The second is a function
Third not a function
Fourth is a function
Step-by-step explanation:
We are tasked to solve the value of p(8a) in the expression p(x)=3x^2-4.
This means that what would find the value of the expression when x=8a. To solve this, we simply substitute the value of x in the expression.
p(x)=3x^2-4
p(8a)=3(8a)^2-4
p(8a)=3(64a^2)-4
p(8a)=192a^2-4