Sin(2θ)+sin(<span>θ)=0
use double angle formula: sin(2</span>θ)=2sin(θ)cos(<span>θ).
=>
2sin(</span>θ)cos(θ)+sin(<span>θ)=0
factor out sin(</span><span>θ)
sin(</span>θ)(2cos(<span>θ)+1)=0
by the zero product property,
sin(</span>θ)=0 ...........(a) or
(2cos(<span>θ)+1)=0.....(b)
Solution to (a): </span>θ=k(π<span>)
solution to (b): </span>θ=(2k+1)(π)+/-(π<span>)/3
for k=integer
For [0,2</span>π<span>), this translates to:
{0, 2</span>π/3,π,4π/3}
Number 4: the slope is 3/4
number 5: y-intercept is 2
I think the answer to your question may be C.)
Answer:
Both ratios reduce to the same ratio 3/50, so the restocking fee is proportional.
Step-by-step explanation:
For the $200, the restocking fee is $12, so the ratio of the restocking fee to the price of the item is 12/200.
For the $150, the restocking fee is $9, so the ratio of the restocking fee to the price of the item is 9/150.
Now we find out if the ratios 12/200 and 9/150 are equal.
12/200 = 3/50
9/150 = 3/50
Both ratios reduce to the same ratio 3/50, so the restocking fee is proportional.