Answer:
Yes if it continues in that direction.
Explanation:
Answer:
Explanation:
There are a couple of ways you could do this.
The easiest is to use E*R1/(R1 + R2)
- E = 10 volts
- R1 = 590 ohms
- R2 = 840 ohms
So the result would be
E_590 = 10 * 590/(590 + 840)
E_590 = 10 * 590/ (1430)
E_590 = 4.13 volts rounded.
You could do this a slightly longer way.
R = 1430 (total ohms in series.
E = 10 volts
I = ???
I = E/R
I = 10 / 1430
I = 0.00699
Now use this current to figure out the voltage drop.
E = I * R
I = 0.00699 amps
R = 590 ohms
E = 0.00699 * 590
E = 4.13 volts
Pick the way of doing it you like best.
Answer:
D) momentum of cannon + momentum of projectile= 0
Explanation:
The law of conservation of momentum states that the total momentum of an isolated system is constant.
In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

Answer:
Scientific Definition of Mass Mass is the quantity of inertia (resistance to acceleration) possessed by an object or the proportion between force and acceleration referred to in Newton's Second Law of Motion (force equals mass times acceleration).
Explanation:
Again, Same Thing!
And Another Wendys Roast