Answer:
The loss in rotational kinetic energy due to the collision is 36.585 J.
Explanation:
Given;
mass of the disk, m₁ = 1.64 kg
radius of the disk, r = 0. 61 m
angular velocity of the disk, ω₁ = 17.6 rad/s
mass of the rod, m₂ = 1.51 kg
length of the rod, L = 1.79 m
angular velocity of the rod, ω₂ = 5.12 rad/s (clock-wise)
let the counter-clockwise be the positive direction
let the clock-wise be the negative direction
The common final velocity of the two systems after the collision is calculated by applying principle of conservation of angular momentum ;
m₁ω₁ + m₂ω₂ = ωf(m₁ + m₂)
where;
ωf is the common final angular velocity
1.64 x 17.6 + 1.51(-5.12) = ωf(1.64 + 1.51)
21.1328 = ωf(3.15)
ωf = 21.1328 / 3.15
ωf = 6.709 rad/s
The moment of inertia of the disk is calculated as follows;
![I_{disk} = \frac{1}{2} mr^2\\\\I_{disk} = \frac{1}{2} (1.64)(0.61)^2\\\\I_{disk} = 0.305 \ kgm^2](https://tex.z-dn.net/?f=I_%7Bdisk%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mr%5E2%5C%5C%5C%5CI_%7Bdisk%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%281.64%29%280.61%29%5E2%5C%5C%5C%5CI_%7Bdisk%7D%20%20%3D%200.305%20%5C%20kgm%5E2)
The moment of inertia of the rod about its center is calculated as follows;
![I_{rod} = \frac{1}{12} mL^2\\\\I_{rod} = \frac{1}{12} \times 1.51 \times 1.79^2\\\\I _{rod }= 0.4032\ kgm^2](https://tex.z-dn.net/?f=I_%7Brod%7D%20%3D%20%5Cfrac%7B1%7D%7B12%7D%20mL%5E2%5C%5C%5C%5CI_%7Brod%7D%20%3D%20%5Cfrac%7B1%7D%7B12%7D%20%5Ctimes%201.51%20%5Ctimes%201.79%5E2%5C%5C%5C%5CI%20_%7Brod%20%7D%3D%200.4032%5C%20kgm%5E2)
The initial rotational kinetic energy of the disk and rod;
![K.E_i = \frac{1}{2} I_{disk}\omega _1 ^2 \ \ + \ \ \frac{1}{2} I_{rod}\omega _2 ^2 \\\\K.E_i= \frac{1}{2} (0.305)(17.6) ^2 \ \ + \ \ \frac{1}{2} (0.4032)(-5.12) ^2\\\\K.E_i = 52.523 \ J](https://tex.z-dn.net/?f=K.E_i%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20I_%7Bdisk%7D%5Comega%20_1%20%5E2%20%5C%20%5C%20%2B%20%5C%20%5C%20%20%5Cfrac%7B1%7D%7B2%7D%20I_%7Brod%7D%5Comega%20_2%20%5E2%20%5C%5C%5C%5CK.E_i%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%280.305%29%2817.6%29%20%5E2%20%5C%20%5C%20%2B%20%5C%20%5C%20%20%5Cfrac%7B1%7D%7B2%7D%20%280.4032%29%28-5.12%29%20%5E2%5C%5C%5C%5CK.E_i%20%3D%2052.523%20%5C%20J)
The final rotational kinetic energy of the disk-rod system is calculated as follows;
![K.E_f = \frac{1}{2} I_{disk}\omega _f ^2 \ \ + \ \ \frac{1}{2} I_{rod}\omega _f ^2\\\\K.E_f = \frac{1}{2} \omega _f ^2(I_{disk} + I_{rod})\\\\K.E_f = \frac{1}{2} (6.709) ^2(0.305+ 0.4032)\\\\K.E_f = 15.938 \ J](https://tex.z-dn.net/?f=K.E_f%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20I_%7Bdisk%7D%5Comega%20_f%20%5E2%20%5C%20%5C%20%2B%20%5C%20%5C%20%20%5Cfrac%7B1%7D%7B2%7D%20I_%7Brod%7D%5Comega%20_f%20%5E2%5C%5C%5C%5CK.E_f%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Comega%20_f%20%5E2%28I_%7Bdisk%7D%20%2B%20I_%7Brod%7D%29%5C%5C%5C%5CK.E_f%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%286.709%29%20%5E2%280.305%2B%200.4032%29%5C%5C%5C%5CK.E_f%20%3D%2015.938%20%5C%20J)
The loss in rotational kinetic energy due to the collision is calculated as follows;
![\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 15.938 J \ - \ 52.523 J\\\\\Delta K.E = - 36.585 \ J](https://tex.z-dn.net/?f=%5CDelta%20K.E%20%3D%20K.E_f%20%5C%20-%20%5C%20K.E_i%5C%5C%5C%5C%5CDelta%20K.E%20%3D%2015.938%20J%20%20%5C%20-%20%5C%2052.523%20J%5C%5C%5C%5C%5CDelta%20K.E%20%3D%20-%2036.585%20%5C%20J)
Therefore, the loss in rotational kinetic energy due to the collision is 36.585 J.