
where

. The second term of the expansion occurs when

.
So the second term of the expansion of

is
Answer:
A
Step-by-step explanation:
3/5 of the letters are roses and 3/5 = 6/10 = 60%
Answer:
a) 658008 samples
b) 274050 samples
c) 515502 samples
Step-by-step explanation:
a) How many ways sample of 5 each can be selected from 40 is just a combination problem since the order of selection isn't important.
So, the number of samples = ⁴⁰C₅ = 658008 samples
b) How many samples of 5 contain exactly one nonconforming chip?
There are 10 nonconforming chips in the batch, and 1 nonconforming chip for the sample of 5 be picked from ten in the following number of ways
¹⁰C₁ = 10 ways
then the remaining 4 conforming chips in a sample of 5 can be picked from the remaining 30 total conforming chips in the following number of ways
³⁰C₄ = 27405 ways
So, total number of samples containing exactly 1 nonconforming chip in a sample of 5 = 10 × 27405 = 274050 samples
c) How many samples of 5 contain at least one nonconforming chip?
The number of samples of 5 that contain at least one nonconforming chip = (Total number of samples) - (Number of samples with no nonconforming chip in them)
Number of samples with no nonconforming chip in them = ³⁰C₅ = 142506 samples
Total number of samples = 658008
The number of samples of 5 that contain at least one nonconforming chip = 658008 - 142506 = 515502 samples
Answer:
1/7
Step-by-step explanation:
Plug in 2 for m, and 14 for n in the expression:
m/n = 2/14
Simplify. Factor out common factors from both the numerator and denominator:
(2/14)/(2/2) = 1/7
1/7 is your answer.
~
Answer:
Step-by-step explanation: