Answer:
B
Step-by-step explanation:
Hey! So, here's a tip. When writing exponents, an easier way is to write a^b, rather than a to the b power. Besides that, here is your answer!
So-------
9^3=729
3^2=9
6^3=216
15^2=225
Now that we have that figured out, we can add them together, wish is simple. 729 + 9 + 216 + 225= 1,179.
Therefore, your final answer will be 1,174.
If you have any questions on this, I'm happy to help you. :)
Answer:
Step-by-step explanation:
We khow that the equation of a circle is written this way :
(x-a)²+(y-b)²=r² where (x,y) are the coordinates of the cercle's points and (a,b) the coordinates of the cercle's center and r the radius .
Our task is to khow the values of a and b :
- We khow that the center is lying on the line 3x+2y=16⇒ 2y=-3x+16⇒ y=
x+8 - We khow that the points P and Q are two points in the cercle
- Let Ω be the center of this cercle
- we can notice that : PΩ AND QΩ are both equal to the radius ⇒ PΩ=QΩ= r
- So let's write the expression of this distance using vectors KHOWING THAT Ω(a,b)
- Vector PΩ(a-4,b-6) and Vector QΩ(a-8,b-2)
- PΩ=
and QΩ=
- Let's substitute a by x and b by y
- PΩ=QΩ we substitute each distance by its expression
- After simplyfying the expressions we get finally : -12+8x-8y=0
- now we have -12x +8x-8y=0 and the line equation 3x+2y-16=0
- these are simultanious equations so after solving them we get x=3.8 wich is approximatively 4 and y=2
- we substitute a by 4 and y by 2 in PΩ to get the radius
- we get r =
= 4 - so r²= 16
- then the equation is : (x-4)²+(y-2)²=16
Answer:
40 mph
Step-by-step explanation:
To find the maximum speed at which the car can travel, as the distance it requires to stop is 168 feet, we just need to use the value of d = 168 in the equation, and then find the value of s:
168 = 0.05s^2 + 2.2s
0.05s^2 + 2.2s - 168 = 0
Using Bhaskara's formula: we have:
Delta = 2.2^2 + 4*0.05*168 = 38.44
sqrt(Delta) = 6.2
s1 = (-2.2 + 6.2)/0.1 = 40 mph
s2 = (-2.2 - 6.2)/0.1 = -84 mph (a negative value does not make sense as 's' is the speed of the car)
So the maximum speed of the car is 40 mph