From the second:
2x-y=4
x=(4+y)/2 and applying this to first:
4+y+3y=12
4y+4=12
4y=8
y=2 and since x=(4+y)/2, x=3 so
x+y=2+3=5
M = (1,4)
N = (5,2)
For M, you simply move to 1 on the x axis abs for 4 you move on the y axis. Same does for N, for 5 you move on the x axis and for 2 you move on the y axis.
Answer:
3
Step-by-step explanation:
lim(t→∞) [t ln(1 + 3/t) ]
If we evaluate the limit, we get:
∞ ln(1 + 3/∞)
∞ ln(1 + 0)
∞ 0
This is undetermined. To apply L'Hopital's rule, we need to rewrite this so the limit evaluates to ∞/∞ or 0/0.
lim(t→∞) [t ln(1 + 3/t) ]
lim(t→∞) [ln(1 + 3/t) / (1/t)]
This evaluates to 0/0. We can simplify a little with u substitution:
lim(u→0) [ln(1 + 3u) / u]
Applying L'Hopital's rule:
lim(u→0) [1/(1 + 3u) × 3 / 1]
lim(u→0) [3 / (1 + 3u)]
3 / (1 + 0)
3
Momentum is mass times velocity so the answer is 48kgm/s