Answer:
Explanation:
The number of neutrons is 127 and the number of protons will be equal to number of electrons. It has 83 protons and a magic number of 127 neutrons. Bi 210 is radioactive isotope of bismuth.
Answer:
Convective zone, chromosphere, corona
Explanation:
A star like the Sun is divided into different layers according to pressure, density, temperature, and the mechanics of energy transport (in the case of the convective zone and radiative zone) for each of those layers.
In stars, there is an equilibrium between two forces, the force of gravity in the inward direction due to their own mass and the radiation pressure in the upward direction as a consequence of the nuclear reaction in their core, that is known as hydrostatic equilibrium.
That leads to different layers according with the properties described above.
Near the core, in the Sun, there is a radiative zone since radiation is the best mechanism of energy transport in this area. Then, in the next layer, it can be found that convection becomes a more efficient way of energy transport that radiation due to the fact that the inner part of the convection zone is at a greater temperature than the outer one.
Finally, there is the atmosphere of the Sun (chromosphere, photosphere, and corona).
Key terms:
Convection: Transport of energy due to different in density and temperature of a material (liquid, gas).
Answer:
= 4.3 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.28 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV)
= 8.459 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 8.459 × 10⁻¹³
= 4.3 × 10 ⁻¹⁴ m
Displacement is how much of a liquid (typically water for simplicity in the metric system) is pushed aside when another object is completely submerged. For example, when a 100mL of water has a block placed into it, and rises to 150mL, the block has displaced the water.