The magnitude of e.m.f induced in the loop when t = 2 s is 31 Volts.
<h3>emf induced in the loop</h3>
The magnitude of e.m.f induced in the loop is calculated as follows;
emf = dФ/dt
Ф = 6t² + 7t
dФ/dt = 12t + 7
at t = 2 seconds
emf = dФ/dt = 12(2) + 7 = 31 V
Thus, the magnitude of e.m.f induced in the loop when t = 2 s is 31 Volts.
Learn more about emf here: brainly.com/question/24158806
#SPJ1
Answer:
(a) 45 micro coulomb
(b) 6 micro Coulomb
Explanation:
C = 3 micro Farad = 3 x 10^-6 Farad
V = 15 V
(a) q = C x V
where, q be the charge.
q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb
(b)
V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad
q = C x V
where, q be the charge.
q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb
As we presume that the fluid density is greater than the gas density based on common sense, the volume of the balloon decreases. The mass per unit volume is known as fluid density.
Greek letter stands in for and (rho). Mass per length squared, or M/L3, is the unit of measurement for density. Specific Weight vs. Weight Density: A fluid density, also known as specific density, is determined by dividing the fluid's weight by its volume. Weight per volume of a fluid is also referred to as weight density.
A mathematical term called "volume" describes how much three-dimensional space is occupied by an item or a closed surface. The measurement of volume is done in cubic units, like m3, cm3, in3, etc.
Learn more about fluid density here
brainly.com/question/24620628
#SPJ4
Answer:
d
Explanation:
uv is safe for humans but bad for bacteria etc... at least I think. I'm sorry if I'm wrong
Answer:
Answer in explanation.
Explanation:
The relationship between the charge on the capacitor and the potential difference across it is given as follows:

where,
Q = Charge on the Capacitor
C = Capacitance of the Capacitor
V = Potential Difference across the Capacitor
This relationship can be used to find the charge on a capacitor, using the voltmeter, as follows:
<u>The potential difference can be measured through the voltmeter. And the capacitance of the capacitor is a known constant value. Therefore, the charge can be found by taking product of both.</u>