1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
2 years ago
14

A spaceship of 3.20 x 10*7kg travels around another planet, of

Physics
1 answer:
vfiekz [6]2 years ago
4 0

Answer:

answer d

Explanation:

It would be asnwer d because you need. to multiople both numbers 3.20x10*7 and 6.34x10^25 then multiple.  

You might be interested in
NEED HELP ASAP
Dafna11 [192]

Answers:

a) -2.54 m/s

b) -2351.25 J

Explanation:

This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum p_{o} must be equal to the final momentum p_{f}:  

p_{o}=p_{f} (1)  

Where:  

p_{o}=m_{1} V_{o} + m_{2} U_{o} (2)  

p_{f}=(m_{1} + m_{2}) V_{f} (3)

m_{1}=110 kg is the mass of the first football player

V{o}=-7 m/s is the velocity of the first football player (to the south)

m_{2}=75 kg  is the mass of the second football player

U_{o}=4 m/s is the velocity of the second football player (to the north)

V_{f} is the final velocity of both football players

With this in mind, let's begin with the answers:

a) Velocity of the players just after the tackle

Substituting (2) and (3) in (1):

m_{1} V_{o} + m_{2} U_{o}=(m_{1} + m_{2}) V_{f} (4)  

Isolating V_{f}:

V_{f}=\frac{m_{1} V_{o} + m_{2} U_{o}}{m_{1} + m_{2}} (5)

V_{f}=\frac{(110 kg)(-7 m/s) + (75 kg) (4 m/s)}{110 kg + 75 kg} (6)

V_{f}=-2.54 m/s (7) The negative sign indicates the direction of the final velocity, to the south

b) Decrease in kinetic energy of the 110kg player

The change in Kinetic energy \Delta K is defined as:

\Delta K=\frac{1}{2} m_{1}V_{f}^{2} - \frac{1}{2} m_{1}V_{o}^{2} (8)

Simplifying:

\Delta K=\frac{1}{2} m_{1}(V_{f}^{2} - V_{o}^{2}) (9)

\Delta K=\frac{1}{2} 110 kg((-2.5 m/s)^{2} - (-7 m/s)^{2}) (10)

Finally:

\Delta K=-2351.25 J (10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision

6 0
3 years ago
The force of gravity on a 1 kg object on the Earth's surface is approximately 9.8 N. For the same object in low-earth orbit arou
mojhsa [17]

Answer:

g = 8.61 m/s²

Explanation:

distance of the International Space Station form earth is 200 Km

mass of the object = 1 Kg

acceleration due to gravity on earth = 9.8 m/s²

mass of earth = 5.972 x 10²⁴ Kg

acceleration due to gravity = ?

r = 6400 + 200 = 6800 Km = 6.8 x 10⁶ n

using formula

 g = \dfrac{GM}{r^2}

 g = \dfrac{6.67\times 10^{-11}\times 5.972\times 10^24}{(6.8\times 10^6)^2}

        g = 8.61 m/s²

3 0
3 years ago
A skydiver jumps out of a hovering helicopter. A few seconds later, another diver jumps out, so they both fall along the same ve
Sergio039 [100]

Answer:

distance difference would a) increase

speed difference would f) stay the same

Explanation:

Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.

Their equations of motion for distance and velocities are

s_2 = gt^2/2

s_1 = g(t + \Delta t)^2/2

v_2 = gt

v_1 = g(t + \Delta t)

Their difference in distance are therefore:

\Delta s = s_1 - s_2 = g(t + \Delta t)^2/2 - gt^2/2

\Delta s = g/2((t + \Delta t)^2 - t^2)

\Delta s = g/2(t + \Delta t - t)(t + \Delta t + t) (AsA^2 - B^2 = (A-B)(A+B)

\Delta s = g\Delta t/2(2t + \Delta t)

So as time progress t increases, Δs would also increases, their distance becomes wider with time.

Similarly for their velocity difference

\Delta v = v_1 - v_2 = g(t + \Delta t) - gt

\Delta v = gt + g\Delta t - gt = g\Delta t

Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.

This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.

8 0
3 years ago
Read 2 more answers
A galvanometer is used as a
agasfer [191]

Answer:

detecting and indicating an electric current

4 0
3 years ago
After which action would the concentration of a solution remain constant?(1 point)
Alika [10]

Answer:

C. Evaporating water from the container.

Explanation:

The concentration of solution changes when solvent or solute are added/removed from a solution.

5 0
3 years ago
Other questions:
  • How did the Planck mission help scientists learn about the age of the universe
    8·1 answer
  • A student is pedaling a stationary bicycle at the U of M Rec Center. Her alveolar PO2 = 115 mm Hg and her oxygen consumption is
    7·1 answer
  • A 6.0-kg object moving 5.0 m/s collides with and sticks to a 2.0-kg object. after the collision the composite object is moving 2
    13·1 answer
  • This is the equation for the formation of magnesium chloride. Mg(s) + 2HCl(l) → MgCl2(aq) + H2(g) Which are the reactants and th
    13·1 answer
  • If Earth were the size of a grape, how big would the Moon be? How far away would the Moon be from the Earth? How large would the
    6·1 answer
  • For an object that is speeding up at a constant rate how would the acceleration vs. time graph look?
    13·2 answers
  • Answer this plzzzzzzzzzzzzz
    8·1 answer
  • An object is 70 um long and 47.66um wide. how long and wide is the object in km?​
    5·1 answer
  • Would someone just answer this now?
    9·1 answer
  • A car on a straight road starts from rest and accelerates at 2.0 meter per second over a distance of 50 meters. Calculate the ma
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!