1. Are peste 300 de specii de pasari
2.Este singura rezervatie naturala unde traieste cainele enot
3. Sunt specii de pesti care depun icre negre
Answer:
The correct answer would be the harmless bacteria had been transformed.
Griffith used two different strains of the bacteria <em>Streptococcus pneumoniae - </em>type-III-S or smooth strain and type II-R or rough strain.
Smooth strain had protective covering around itself (protect itself from hosts's immune system) and was able to kill the mice.
Rough strain did not have any protective covering around itself and thus could be easily removed by the immune system Hence, it was not able to kill the mice.
In addition, heat killed smooth strain was also not able to kill the mice. However, when remains of it was added with rough strain then the blend was able to kill the mice.
Lastly, he was able to isolate living bacteria of both the strains.
He concluded that non-lethal type II-R strain was transformed into lethal type II-S strain by "transforming principle" (which we know today as DNA) that was supposed to be the part of dead III-S strain bacteria.
The answer with high importance is because:
<span>An error in DNA replication would affect many generations of cells.</span>
Answer:
They use a gene modification technique called CRIPSR-CAS9. The pigs have been given a gene that allows them to better regulate their own body temperature, whereby they burn fat, or at which animals consume their own fat.
Explanation:
British and Chinese scientists explained that they conducted the study by adding a mouse version of the UCP1 gene used for porcine embryos, which is used to regulate body temperature characteristic of most mammals, but not ordinary pigs.
It is problematic for pigs to maintain a stable body temperature, and this is especially complicated in pigs that are cold in the winter months because they have not been able to "store" fat.
Inserting the UCP2 gene could solve this problem.
Answer:
ice /freezing fosilization results when the whole animal is preserved