y = x + 4/x
replace x with -x. Do you get back the original equation after simplifying. if you do, the function is even.
replace y with -y AND x with -x. Do you get back the original equation after simplifying. If you do, the function is odd.
A function can be either even or odd but not both. Or it can be neither one.
Let's first replace x with -x
y = -x + 4/-x = -x - 4/x = -(x + 4/x)
we see that this function is not the same because the original function has been multiplied by -1
. Let's replace y with -y and x with -x
-y = -x + 4/-x
-y = -x - 4/x
-y = -(x + 4/x)
y = x + 4/x
This is the original equation so the function is odd.
Answer:
When you're talking factors, you're talking about some sort of integer; that's because “factors” depends on the concept of divisibility, which are virtually exclusive to integers. When you're talking “greater than”, you're excluding complex numbers (where the concept of ordering doesn't exist) and you're probably assuming positive integers. If you are, then no; no positive integer has factors that are larger than it.
If you go beyond positive numbers, that changes. 0 is an integer, and has every integer, except itself, as factors; since its positive factors are greater than zero, there are factors of zero that are greater than zero. If you extend to include negative numbers, you always have both positive and negative factors; and since all positive integers are greater than all negative integers, all negative integers have factors that are greater than them.
Beyond zero, though, no integer has factors whose magnitudes are greater than its own. And that's a principle that can be extended even to the complex integers
Step-by-step explanation:
Answer:
(x + y)² =16
Step-by-step explanation:
hello :
(x + y)² = x²+y²+2xy and : x²+y² = 6 xy = 5
(x + y)² = 6+2(5)
(x + y)² =16
Answer:
1. 15
2. 8
Step-by-step explanation:
The two sequence are geometric progression GP, because they follow a constant multiple (common ratio)
The nth term of a GP is;
Tn = ar^(n-1)
Where;
a = first term
r = common ratio
For the first sequence;
The common ratio r is
r = T3/T2 = 540/90 = 6
r = 6
T2 = ar^(2-1) = ar
T2 = 90 = ar
Substituting the values of r;
90 = a × 6
a = 90/6
a = 15
First term = 15
2. The sam method applies here.
Common ratio r = T3/T2 = 128/32 = 4
r = 4
T2 = ar^(2-1) = ar
T2 = 32 = ar
Substituting the values of r;
32 = a × 4
a = 32/4
a = 8
First term = 8