9514 1404 393
Answer:
a (3,-1)
Step-by-step explanation:
The number that "completes the square" is the square of half the x-coefficient, (-6/2)^2 = 9. Rearranging the given function to include the square trinomial, we have ...
f(x) = x^2 -6x +9 -1 . . . . . . . here, we have 8 = 9 - 1
f(x) = (x -3)^2 -1 . . . . . . . . . . vertex form
Comparing this to the generic vertex form ...
f(x) = (x -h)^2 +k . . . . . . . vertex at (h, k)
we see that h=3 and k=-1.
The vertex is (h, k) = (3, -1).
Answer:
y = 2*x^2 - 2*x - 24
Step-by-step explanation:
If we have a quadratic function with roots a and b, we can write the equation for that function as:
y = f(x) = A*(x - a)*(x - b)
Where A is the leading coefficient.
In this case, we know that the roots are: 4 and -3
Then the function will be something like:
f(x) = A*(x - 4)*(x - (-3) )
f(x) = A*(x - 4)*(x + 3)
Now we need to determine the value of A.
We also know that the graph of the function passes through the point (3, -12)
This means that:
f(3) = -12
Then:
-12 = A*(3 - 4)*(3 + 3)
-12 = A*(-1)*(6)
-12 = A*(-6)
-12/-6 = A
2 = A
Then the equation is:
y = f(x) = 2*(x - 4)*(x + 3)
Now we need to write this in standard form, so we just need to expand the equation:
y = f(x) = 2*(x^2 + x*3 - x*4 - 4*3)
y = f(x) = 2*(x^2 - x - 12)
y = f(x) = 2*x^2 - 2*x - 24
Then the relation is:
y = 2*x^2 - 2*x - 24
Answer:
Step-by-step explanation:
The function is y = 17x. Then if x = 1, y = 17; if x = 2, y = 34, and so on, which agree with the table. The other questions are difficult or impossible to read. Please try to obtain and share better quality images.