We conclude that 375 portions can be sold.
<h3>
How many portions can be sold?</h3>
We know that 500 portions have been ordered, but only 5/6 of that was delivered, so the number of delivered portions is:
p = (5/6)*500 = 416.6
Which we can round to the next whole number, 417.
Now we know that 10% of these are given to the players and staff, then the number of portions that can be sold is the 90% of 417, which is:
N = 417*(90%/100%) = 417*0.9 = 375
We conclude that 375 portions can be sold.
If you want to learn more about percentages:
brainly.com/question/843074
#SPJ1
Answer:
C
Step-by-step explanation:
Answer:
The second and third
Step-by-step explanation:
Answer:

Step-by-step explanation:
So, the function, P(t), represents the number of cells after t hours.
This means that the derivative, P'(t), represents the instantaneous rate of change (in cells per hour) at a certain point t.
C)
So, we are given that the quadratic curve of the trend is the function:

To find the <em>instanteous</em> rate of growth at t=5 hours, we must first differentiate the function. So, differentiate with respect to t:
![\frac{d}{dt}[P(t)]=\frac{d}{dt}[6.10t^2-9.28t+16.43]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%5BP%28t%29%5D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2-9.28t%2B16.43%5D)
Expand:
![P'(t)=\frac{d}{dt}[6.10t^2]+\frac{d}{dt}[-9.28t]+\frac{d}{dt}[16.43]](https://tex.z-dn.net/?f=P%27%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B6.10t%5E2%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B-9.28t%5D%2B%5Cfrac%7Bd%7D%7Bdt%7D%5B16.43%5D)
Move the constant to the front using the constant multiple rule. The derivative of a constant is 0. So:
![P'(t)=6.10\frac{d}{dt}[t^2]-9.28\frac{d}{dt}[t]](https://tex.z-dn.net/?f=P%27%28t%29%3D6.10%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5E2%5D-9.28%5Cfrac%7Bd%7D%7Bdt%7D%5Bt%5D)
Differentiate. Use the power rule:

Simplify:

So, to find the instantaneous rate of growth at t=5, substitute 5 into our differentiated function:

Multiply:

Subtract:

This tells us that at <em>exactly</em> t=5, the rate of growth is 51.72 cells per hour.
And we're done!
Proportions are the comparison of two equal ratios. Therefore, proportional relationships are relationships between two equal ratios. So yes, it does matter.. I<span>nterval: all the numbers between two given numbers.</span>