Solve the equation x^3 y^'" + 5x^2 y" + 7xy' + 8y = 0
1 answer:
Make the substitution
, then compute the derivatives of
with respect to
via the chain rule.


Let
.
![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac fx\right]=\dfrac{x\frac{\mathrm df}{\mathrm dx}-f}{x^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac%20fx%5Cright%5D%3D%5Cdfrac%7Bx%5Cfrac%7B%5Cmathrm%20df%7D%7B%5Cmathrm%20dx%7D-f%7D%7Bx%5E2%7D)


Let
.
![\dfrac{\mathrm d^3y}{\mathrm dx^3}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{g-f}{x^2}\right]=\dfrac{x^2\left(\frac{\mathrm dg}{\mathrm dx}-\frac{\mathrm df}{\mathrm dx}\right)-2x(g-f)}{x^4}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E3y%7D%7B%5Cmathrm%20dx%5E3%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac%7Bg-f%7D%7Bx%5E2%7D%5Cright%5D%3D%5Cdfrac%7Bx%5E2%5Cleft%28%5Cfrac%7B%5Cmathrm%20dg%7D%7B%5Cmathrm%20dx%7D-%5Cfrac%7B%5Cmathrm%20df%7D%7B%5Cmathrm%20dx%7D%5Cright%29-2x%28g-f%29%7D%7Bx%5E4%7D)


Substituting
and its derivatives into the ODE gives a new one that is linear in
:



which has characteristic equation

with roots
and
, so that the characteristic solution is

Replace
to solve for
:


You might be interested in
Answer:
false
Step-by-step explanation:
y=11x+15
y=15x+10
This is the system of equariob
Well 3.20 is 2 tenths of 1 and .02 is 2 hundredths of one so its >
Answer:
the third option
Step-by-step explanation:
do you want an explanation?
Answer:
1. CHECK
2. CHECK
Step-by-step explanation:
i hole it helps