In a constant acceleration of 3m per second, after 10 seconds,
3 x 10 = 30
B. 30m/s is your answer
hope this helps :D
THE DOPPLER EFFECT. Anyways, it would have a higher whistle as it approaches you, when it gets to you it only gets quieter because it leaves after. Think of a motorcycle going by, its loud coming to you then as it passes it gets quieter.
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height.
Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
<h3>How does tension affect the speed of a wave in a rope?</h3>
The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.
Therefore, My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height. Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
Learn more about tension from
brainly.com/question/2008782
#SPJ4
See full question below
(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.