The answer is C ……… byeeee
4x - y = 3
y = 2x + 13
Substitute the second equation into the first equation:
4x - y = 3 [since y = 2x + 13, you can substitute (2x + 13) for "y" in the equation]
4x - (2x + 13) = 3 Distribute/multiply - into (2x + 13)
4x - 2x - 13 = 3
2x - 13 = 3 Add 13 on both sides
2x = 16 Divide 2 on both sides
x = 8
Now that you know x = 8, plug it into one of the equations to find y
y = 2x + 13
y = 2(8) + 13
y = 16 + 13
y = 29
x = 8, y = 29 or (8, 29)
[proof]
4x - y = 3
4(8) - 29 = 3
32 - 29 = 3
3 = 3
y = 2x + 13
29 = 2(8) + 13
29 = 16 + 13
29 = 29
Step-by-step explanation:
Let's take the RHS,
we've,
<h3>(<u>Cosa</u><u>/</u><u>2</u><u> </u><u>-</u><u> </u><u>sina</u><u>/</u><u>2</u><u>)</u></h3><h3>(<u>Cosa/</u><u>2</u><u> </u><u>+</u><u> </u><u>sina</u><u>/</u><u>2</u><u>)</u></h3>
Let's Rationalise the Denominator.
we get,
<h3>(<u>Cosa/</u><u>2</u><u> </u><u>-</u><u> </u><u>sina</u><u>/</u><u>2</u><u>)</u><u>^</u><u>2</u></h3><h3><u>(</u><u>cosa</u><u>/</u><u>2</u><u>)</u><u>^</u><u>2</u><u> </u><u>-</u><u> </u><u>(</u><u>sina</u><u>/</u><u>2</u><u>)</u><u>^</u><u>2</u></h3>
The numerator is in form of (a-b)^2 and the denominator is in form of a^2-b^2. Now,
By formula,
<h3>(<u>Cosa/</u><u>2</u><u>)</u><u>^</u><u>2</u><u> </u><u>-2cosa</u><u>/</u><u>2</u><u>.</u><u>s</u><u>i</u><u>n</u><u>a</u><u>/</u><u>2</u><u> </u><u>+</u><u> </u><u>(</u><u>sina</u><u>/</u><u>2</u><u>)</u><u>^</u><u>2</u> </h3><h3> cosa</h3>
Here I substituted Cosa in place of (Cosa/2)^2 - (sina/2)^2 because it's the formula of cosa in sub multiple angle form.
<h3>In the numerator, </h3>
(sina/2)^2 + (Cosa/2)^2 =1.........( by formula)
so we have,
<h3><u>1</u><u> </u><u>-</u><u> </u><u>2</u><u>s</u><u>i</u><u>n</u><u>a</u><u>/</u><u>2</u><u>.</u><u>c</u><u>o</u><u>s</u><u>a</u><u>/</u><u>2</u></h3><h3>Cosa</h3>
<h3 /><h3 /><h3><u>1</u><u> </u><u>-</u><u> </u><u>sina</u> {because 2sina/2.cosa/2=sina)</h3><h3>Cosa</h3>
LHS proved.
Thank You.