The surface area of the triangular prism is 1664 square inches.
Explanation:
Given that the triangular prism has a length of 20 inches and has a triangular face with a base of 24 inches and a height of 16 inches.
The other two sides of the triangle are 20 inches each.
We need to determine the surface area of the triangular prism.
The surface area of the triangular prism can be determined using the formula,

where b is the base, h is the height, p is the perimeter and l is the length
From the given the measurements of b, h, p and l are given by
,
,
and

Hence, substituting these values in the above formula, we get,

Simplifying the terms, we get,

Adding the terms, we have,

Thus, the surface area of the triangular prism is 1664 square inches.
Answer: a
Step-by-step explanation: C is in quadrant 1 and quadrant 1 is (+,+)
I started by labeling the right angle (Angle C) 90º. Next, I wrote down everything in one equation.
2x + 90 + 3x - 20 = 180º (180 degrees in a triangle)
Next, I add 20 on both sides.
2x + 90 + 3x = 200º
I combine like terms (2x and 3x)
5x + 90 = 200º
I subtract 90 from both sides.
5x = 110º
Divide 110 by 5 to get x.
x = 22
======
For problem two, I label all the angles I know.
49º + 80º + r = 180º
I add 80 and 49.
129º + r = 180º
I subtract 180 and 129 and get 51º, which is your angle for R.
For angle X, you know that angle R plus angle X equals half of a circle, which is 180º
We know from before that 129º is 180º without R, so X is 129º
I hope this helps! Let me know if I'm wrong!
Answer:
One interior angle is 50°.
Exterior angle is 95°.
Step-by-step explanation: