Answer:
sec²θ - tanθ(secθ) is the simplification of given trigonometric expression.
Step-by-step explanation:
We have given the following trigonometric expression:
1/1+sinθ
We have to simplify this trigonometric expression.
For this, we multiply and divide the given trigonometric expression by
1-sinθ.
(1/1+sinθ ) ÷ ( 1-sinθ)/(1-sinθ)
1(1-sinθ) / (1-sinθ)(1+sinθ)
(1-sinθ) / (1-sin²θ)
We know that 1-sin²θ = cos²θ.
We replace the denominator of above trigonometric expression by cos²θ.
( 1-sinθ) / cos²θ
(1/cos²θ) - (sinθ/cos²θ)
(1/cos²θ) - ( sinθ/cosθ)(1/cosθ)
As we know that 1/cos²θ = sec²θ, sinθ/cosθ = tanθ and 1/cosθ = secθ.So we have,
sec²θ - tanθ(secθ) is the simplification of given trigonometric expression.