Answer:

Step-by-step explanation:
The population of a city is 250,000 and the annual growth rate is 2.2%
General equation for exponential growth is

Where y is final population and P is the initial population
'r' is the rate of growth and x is the number of years
p = 25000 and r= 2.2%= 0.022. Replace all the values in the general equaiton


Answer:
I think 4:1 I'm not that sure tho
Answer:
Equation of the tangent to the curve
y = 240x - 215994
Equation of the normal
y = (-1/240)x + 9.75 = - 0.00417x + 9.75
Step-by-step explanation:
y = (6 + 4x)² = 36 + 48x + 16x² = 16x² + 48x + 36
dy/dx = 32x + 48
At the point (6,900),
dy/dx = 32(6) + 48 = 240
Equation of the tangent at point (a,b) is
(y - b) = m(x - a)
a = 6, b = 900, m = 240
y - 6 = 240(x - 900)
In the y = mx + b form,
y - 6 = 240x - 216000
y = 240x - 215994
The slope of the normal line = -(1/slope of the tangent line) (since they're both perpenducular to each other)
Slope of the normal line = -1/240
Equation of normal
y - 6 = (-1/240)(x - 900)
y - 6 = (-x/240) + 3.75
y = (-1/240)x + 9.75
y = - 0.00417x + 9.75
Answer:
chile I think it's A
Step-by-step explanation:
anyway, if it goes through the same point as the the first one, it becomes a solution and depending on the equation everything either to the left or right, above or below, becomes a solution as well. don't stress bruv, we all got small brain
Answer:
0.15651
Step-by-step explanation:
This can be approximated using a Poisson distribution formula.
The Poisson distribution formula is given by
P(X = x) = (e^-λ)(λˣ)/x!
P(X ≤ x) = Σ (e^-λ)(λˣ)/x! (Summation From 0 to x)
where λ = mean of distribution = 20 red bags of skittles (20% of 100 bags of skittles means 20 red bags of skittles)
x = variable whose probability is required = less than 16 red bags of skittles
P(X < x) = Σ (e^-λ)(λˣ)/x! (Summation From 0 to (x-1))
P(X < 16) = Σ (e^-λ)(λˣ)/x! (Summation From x=0 to x=15)
P(X < 16) = P(X=0) + P(X=1) + P(X=2) +......+ P(X=15)
Solving this,
P(X < 16) = 0.15651