<span>Given that your favorite soccer team has 3 games left to finish the season and that the
outcome of each game can be win, lose, or tie.
The number of possible
outcomes that exist is given by

</span>
Answer:
Step-by-step explanation:
A straight line adds up to 180 degrees, therefore 3x+6x = 180
9x = 180
x = 20
<h3>3
Answers: Choice D, Choice E, Choice F</h3>
============================================================
Explanation:
The inequality 6x - 10y ≥ 9 solves to y ≤ (3/5)x - 9/10 when you isolate y.
Graph the line y = (3/5)x - 9/10 and make this a solid line. The boundary line is solid due to the "or equal to" as part of the inequality sign. We shade below the boundary line because of the "less than" after we isolated for y.
Now graph all of the points given as I've done so in the diagram below. The points in the blue shaded region, or on the boundary line, are part of the solution set. Those points are D, E and F.
We can verify this algebraically. For instance, if we weren't sure point E was a solution or not, we would plug the coordinates into the inequality to get...
6x - 10y ≥ 9
6(5) - 10(2) ≥ 9 .... plug in (x,y) = (5,2)
30 - 20 ≥ 9
10 ≥ 9 ... this is a true statement
Since we end up with a true statement, this verifies point E is one of the solutions. I'll let you check points D and F.
-----------
I'll show an example of something that doesn't work. Let's pick on point A.
We'll plug in (x,y) = (-1,1)
6x - 10y ≥ 9
6(-1) - 10(1) ≥ 9
-6 - 10 ≥ 9
-16 ≥ 9
The last inequality is false because -16 is smaller than 9. So this shows point A is not a solution. Choices B and C are non-solutions for similar reasons.
The ticket price that would maximize the total revenue would be $ 23.
Given that a football team charges $ 30 per ticket and averages 20,000 people per game, and each person spend an average of $ 8 on concessions, and for every drop of $ 1 in price, the attendance rises by 800 people, to determine what ticket price should the team charge to maximize total revenue, the following calculation must be performed:
- 20,000 x 30 + 20,000 x 8 = 760,000
- 24,000 x 25 + 24,000 x 8 = 792,000
- 28,000 x 20 + 28,000 x 8 = 784,000
- 26,000 x 22.5 + 26,000 x 8 = 793,000
- 27,200 x 21 + 27,200 x 8 = 788,000
- 26,400 x 22 + 26,400 x 8 = 792,000
- 25,600 x 23 + 25,600 x 8 = 793,600
- 24,800 x 24 + 24,600 x 8 = 792,000
Therefore, the ticket price that would maximize the total revenue would be $ 23.
Learn more in brainly.com/question/7271015