Both problems give you a function in the second column and the x-values. To find out the values of a through f, you need to plug in those x-values into the function and simplify!
You need to know three exponent rules to simplify these expressions:
1)
The
negative exponent rule says that when a
base has a negative exponent, flip the base onto the other side of the
fraction to make it into a positive exponent. For example,
![3^{-2} = \frac{1}{3^{2} }](https://tex.z-dn.net/?f=%203%5E%7B-2%7D%20%3D%0A%5Cfrac%7B1%7D%7B3%5E%7B2%7D%20%7D%20)
.
2)
Raising a fraction to a power is the same as separately raising the numerator and denominator to that power. For example,
![(\frac{3}{4}) ^{3} = \frac{ 3^{3} }{4^{3} }](https://tex.z-dn.net/?f=%28%5Cfrac%7B3%7D%7B4%7D%29%20%5E%7B3%7D%20%20%3D%20%20%5Cfrac%7B%203%5E%7B3%7D%20%7D%7B4%5E%7B3%7D%20%7D%20)
.
3) The
zero exponent rule<span> says that any number
raised to zero is 1. For example,
![3^{0} = 1](https://tex.z-dn.net/?f=%203%5E%7B0%7D%20%3D%201)
.
</span>
Back to the Problem:
Problem 1
The x-values are in the left column. The title of the right column tells you that the function is
![y = 4^{-x}](https://tex.z-dn.net/?f=y%20%3D%20%204%5E%7B-x%7D)
. The x-values are:
<span>
1) x = 0</span>Plug this into
![y = 4^{-x}](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D)
to find letter a:
![y = 4^{-x}\\ y = 4^{-0}\\ y = 4^{0}\\ y = 1](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D%5C%5C%0Ay%20%3D%204%5E%7B-0%7D%5C%5C%0Ay%20%3D%204%5E%7B0%7D%5C%5C%0Ay%20%3D%201)
<span>
2) x = 2</span>Plug this into
![y = 4^{-x}](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D)
to find letter b:
![y = 4^{-x}\\ y = 4^{-2}\\ y = \frac{1}{4^{2}} \\ y= \frac{1}{16}](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D%5C%5C%20%0Ay%20%3D%204%5E%7B-2%7D%5C%5C%20%0Ay%20%3D%20%20%5Cfrac%7B1%7D%7B4%5E%7B2%7D%7D%20%5C%5C%20%20%0Ay%3D%20%5Cfrac%7B1%7D%7B16%7D%20)
<span>
3) x = 4</span>Plug this into
![y = 4^{-x}](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D)
to find letter c:
![y = 4^{-x}\\ y = 4^{-4}\\ y = \frac{1}{4^{4}} \\ y= \frac{1}{256}](https://tex.z-dn.net/?f=y%20%3D%204%5E%7B-x%7D%5C%5C%20%0Ay%20%3D%204%5E%7B-4%7D%5C%5C%20%0Ay%20%3D%20%20%5Cfrac%7B1%7D%7B4%5E%7B4%7D%7D%20%5C%5C%20%20%0Ay%3D%20%5Cfrac%7B1%7D%7B256%7D%20)
<span>
Problem 2
</span>The x-values are in the left column. The title of the right column tells you that the function is
![y = (\frac{2}{3})^x](https://tex.z-dn.net/?f=y%20%3D%20%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex)
. The x-values are:
<span>
1) x = 0</span>Plug this into
![y = (\frac{2}{3})^x](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex)
to find letter d:
![y = (\frac{2}{3})^x\\ y = (\frac{2}{3})^0\\ y = 1](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex%5C%5C%0Ay%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5E0%5C%5C%0Ay%20%3D%201)
<span>
2) x = 2
</span>Plug this into
![y = (\frac{2}{3})^x](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex)
to find letter e:
![y = (\frac{2}{3})^x\\ y = (\frac{2}{3})^2\\ y = \frac{2^2}{3^2}\\ y = \frac{4}{9}](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex%5C%5C%20y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5E2%5C%5C%20y%20%3D%20%5Cfrac%7B2%5E2%7D%7B3%5E2%7D%5C%5C%0Ay%20%3D%20%20%5Cfrac%7B4%7D%7B9%7D%20)
<span>
3) x = 4
</span>Plug this into
![y = (\frac{2}{3})^x](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex)
to find letter f:
![y = (\frac{2}{3})^x\\ y = (\frac{2}{3})^4\\ y = \frac{2^4}{3^4}\\ y = \frac{16}{81}](https://tex.z-dn.net/?f=y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ex%5C%5C%20y%20%3D%20%28%5Cfrac%7B2%7D%7B3%7D%29%5E4%5C%5C%20y%20%3D%20%5Cfrac%7B2%5E4%7D%7B3%5E4%7D%5C%5C%20y%20%3D%20%5Cfrac%7B16%7D%7B81%7D)
<span>
-------
Answers: a = 1b = </span>
![\frac{1}{16}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B16%7D)
<span>
c = </span>
d = 1e =
f =
Answer:
answer would be the new area wil be 1/2 of the old area
Step-by-step explanation:
I'm pretty sure it's right hope this helps
Answer:
Teachers are idiots that's why :)
Need to know the angle for this I think?