Answer:
2 triangles are possible.
Step-by-step explanation:
Given
a=6
b=10
A=33°
To find:
Number of triangles possible ?
Solution:
First of all, let us use the <em>sine rule</em>:
As per Sine Rule:
![\dfrac{a}{sinA}=\dfrac{b}{sinB}](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7BsinA%7D%3D%5Cdfrac%7Bb%7D%7BsinB%7D)
And let us find the angle B.
![\dfrac{6}{sin33}=\dfrac{10}{sinB}\\sinB = \dfrac{10}{6}\times sin33\\B =sin^{-1}(1.67 \times 0.545)\\B =sin^{-1}(0.9095) =65.44^\circ](https://tex.z-dn.net/?f=%5Cdfrac%7B6%7D%7Bsin33%7D%3D%5Cdfrac%7B10%7D%7BsinB%7D%5C%5CsinB%20%3D%20%5Cdfrac%7B10%7D%7B6%7D%5Ctimes%20sin33%5C%5CB%20%3Dsin%5E%7B-1%7D%281.67%20%5Ctimes%200.545%29%5C%5CB%20%3Dsin%5E%7B-1%7D%280.9095%29%20%3D65.44%5E%5Ccirc)
This value is in the 1st quadrant i.e. acute angle.
One more value for B is possible in the 2nd quadrant i.e. obtuse angle which is: 180 - 65.44 = ![114.56^\circ](https://tex.z-dn.net/?f=114.56%5E%5Ccirc)
For the value of
, let us find
:
![\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+65.44+\angle C = 180\\\Rightarrow \angle C = 180-98.44 = 81.56^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%20%3D%20180%5E%5Ccirc%5C%5C%5CRightarrow%2033%2B65.44%2B%5Cangle%20C%20%3D%20180%5C%5C%5CRightarrow%20%5Cangle%20C%20%3D%20180-98.44%20%3D%2081.56%5E%5Ccirc)
Let us find side c using sine rule again:
![\dfrac{6}{sin33}=\dfrac{c}{sin81.56^\circ}\\\Rightarrow c = 11.02 \times sin81.56^\circ = 10.89](https://tex.z-dn.net/?f=%5Cdfrac%7B6%7D%7Bsin33%7D%3D%5Cdfrac%7Bc%7D%7Bsin81.56%5E%5Ccirc%7D%5C%5C%5CRightarrow%20c%20%20%3D%2011.02%20%5Ctimes%20sin81.56%5E%5Ccirc%20%3D%2010.89)
So, one possible triangle is:
a = 6, b = 10, c = 10.89
A=33°,
A=65.44°,
C=81.56°
For the value of ![\angle B =](https://tex.z-dn.net/?f=%5Cangle%20B%20%3D)
, let us find
:
![\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+114.56+\angle C = 180\\\Rightarrow \angle C = 180-147.56 = 32.44^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%20%3D%20180%5E%5Ccirc%5C%5C%5CRightarrow%2033%2B114.56%2B%5Cangle%20C%20%3D%20180%5C%5C%5CRightarrow%20%5Cangle%20C%20%3D%20180-147.56%20%3D%2032.44%5E%5Ccirc)
Let us find side c using sine rule again:
![\dfrac{6}{sin33}=\dfrac{c}{sin32.44^\circ}\\\Rightarrow c = 11.02 \times sin32.44^\circ = 5.91](https://tex.z-dn.net/?f=%5Cdfrac%7B6%7D%7Bsin33%7D%3D%5Cdfrac%7Bc%7D%7Bsin32.44%5E%5Ccirc%7D%5C%5C%5CRightarrow%20c%20%20%3D%2011.02%20%5Ctimes%20sin32.44%5E%5Ccirc%20%3D%205.91)
So, second possible triangle is:
a = 6, b = 10, c = 5.91
A=33°,
A=114.56°,
C=32.44°
So, answer is : 2 triangles are possible.