Answer:
1. H0 : p = 0.9
H1 : p ≠ 0.9
2. The test is two tailed.
3. Reject the null hypothesis
Step-by-step explanation:
We are given that we have to test the claim that the proportion of people who own cats is significantly different than 90% at the 0.1 significance level.
So, Null Hypothesis, : p = 0.90
Alternate Hypothesis, : p 0.9
Here, the test is two tailed because we have given that to test the claim that the proportion of people who own cats is significantly different than 90% which means it can be less than 0.90 or more than 0.90.
Now, test statistics is given by;
~ N(0,1) , where, n = sample size = 100
= 0.94 (given)
So, Test statistics = = 1.68
Now, P-value = P(Z > 1.68) = 1 - P(Z <= 1.68)
= 1 - 0.95352 = 0.0465 ≈ 0.05 or 5%
Now, our decision rule is that;
If p-value < significance level ⇒ Reject null hypothesis
If p-value > significance level ⇒ Accept null hypothesis
Since, here p-value is less than significance level as 0.05 < 0.1, so we have sufficient evidence to reject null hypothesis.
Therefore, we conclude that proportion of people who own cats is significantly different than 90%.