1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
3 years ago
13

Kitchen chairs are purchased wholesale for $36 each by a discount furniture store. Then, the store marks up the chairs by 60 per

cent. The store has a special sale where all items are marked down by 20 percent. How much would two chairs cost during the sale?
Mathematics
1 answer:
neonofarm [45]3 years ago
4 0

Answer:

starts at 36....marks up by 60%

36 + 0.60(36) = 36 + 21.60 = 57.60

now they mark it down by 20%

57.60 - 0.20(57.60) = 57.60 - 11.52 = 46.08

46.08 * 2 = 92.16

Step-by-step explanation:

You might be interested in
You can represent an odd integer whith the expression 2n+1, where n is any integer . Write and solve an equation to find three c
oksian1 [2.3K]
Any odd number can be expressed by 2n+1.

For example,  

2n+1=111
2n=110
n=110/2=55

means that 111 is 2n+1 for n=55


Thus if an odd number is 2a+1, the next few numbers are as follows:

2a+1, 2a+2, 2a+3, 2a+4, 2a+5

So 2a+1, 2a+3 and 2a+5 are 3 consecutive odd numbers.


Back to our problem: 

three consecutive odd numbers whose sum is 63 are:

(2n+1)+(2n+3)+(2n+5)=63

6n+9=63

6n=63-9=54

n=54/6=9


2n+1=2*9+1=18+1=19, the 2 next odd numbers are 21 and 23


Answer: 19, 21, 23



5 0
3 years ago
Solve the right triangle below. Round sides to the nearest thousandth and angles to the nearest degree.
aalyn [17]

Answer:

Option 4, BC = 12.689, m∠A = 58°, and m∠C = 32°

Hope this helps!

4 0
3 years ago
(6y + 3) minus (3y + 6) when y=7
never [62]

Answer:

y

Step-by-step explanation:

((((2•3y3) -  22y2) -  3y) -  —) -  2

                               y    

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  y  as the denominator :

                      6y3 - 4y2 - 3y     (6y3 - 4y2 - 3y) • y

    6y3 - 4y2 - 3y =  ——————————————  =  ————————————————————

                            1                     y          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6y3 - 4y2 - 3y  =   y • (6y2 - 4y - 3)

Trying to factor by splitting the middle term

5.2     Factoring  6y2 - 4y - 3

The first term is,  6y2  its coefficient is  6 .

The middle term is,  -4y  its coefficient is  -4 .

The last term, "the constant", is  -3

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -4 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

y • (6y2-4y-3) • y - (6)     6y4 - 4y3 - 3y2 - 6

————————————————————————  =  ———————————————————

           y                          y        

Equation at the end of step

5

:

 (6y4 - 4y3 - 3y2 - 6)    

 ————————————————————— -  2

           y              

STEP

6

:

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  y  as the denominator :

        2     2 • y

   2 =  —  =  —————

        1       y  

Checking for a perfect cube :

6.2    6y4 - 4y3 - 3y2 - 6  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  6y4 - 4y3 - 3y2 - 6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3y2 - 6

Group 2:  6y4 - 4y3

Pull out from each group separately :

Group 1:   (y2 + 2) • (-3)

Group 2:   (3y - 2) • (2y3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00    

     -1       2        -0.50        -5.88    

     -1       3        -0.33        -6.11    

     -1       6        -0.17        -6.06    

     -2       1        -2.00        110.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

6.5       Adding up the two equivalent fractions

(6y4-4y3-3y2-6) - (2 • y)      6y4 - 4y3 - 3y2 - 2y - 6

—————————————————————————  =  ————————————————————————

            y                            y            

Polynomial Roots Calculator :

6.6    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 2y - 6

    See theory in step 6.4

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -4.88    

     -1       3        -0.33        -5.44    

     -1       6        -0.17        -5.73    

     -2       1        -2.00        114.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

 6y4 - 4y3 - 3y2 - 2y - 6

 ————————————————————————

            y            

4 0
2 years ago
Read 2 more answers
If f(x) and f⁻¹(x) are inverse functions of each other and f(x)=2x+5, what is f⁻¹(8)?
dexar [7]

Answer:

3/2.

Step-by-step explanation:

f(x)=2x+5   Finding the inverse:

y = 2x + 5

2x = y - 5

x = (y - 5)/2

So the inverse f-1(x) = (x - 5)/2

and f-1(8) = (8-5)/2

= 3/2.

3 0
3 years ago
K/8=11<br> Find the value of K
____ [38]

Answer:

k=88

Step-by-step explanation:

as 8*11=88

4 0
3 years ago
Read 2 more answers
Other questions:
  • if the expression 4x-3 is equal to 11 for some value of x, then what is the expressiom 4x-1 equal for the same value of x
    5·1 answer
  • What is 12 hours made into minutes
    15·2 answers
  • PLEASE HELP ME IT TAKES SOO LONG TO ANSWER!!!!!!!!!!!!!!!!!!!!1
    10·1 answer
  • What is 6+8+4+8+8+5 over 6
    10·2 answers
  • Which calculation will ALWAYS give a result greater than 11?
    10·1 answer
  • URGENT WILL MARK BRAINLIEST! 55 PTS!!
    10·1 answer
  • Find the missing length of the triangles it’s OK if you can only do one
    11·1 answer
  • How to write “6 times the quantity two x plus three y” in a Algebraic expression.
    13·2 answers
  • Help Me in my Math Thanks :)​
    9·1 answer
  • Jerry bought 680 square feet of wood flooring to liven up his retail store. He has 1/4 of the flooring left over. How many squar
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!