<span>here we can use Pythogoras' theorem.
in right angled triangles the square of the hypotenuse is equal to the sum of the squares of the other 2 sides.
hypotenuse is 19 cm. One side is 13 cm and we need to find the length of the third side.
19</span>²<span> = 13</span>²<span> + X</span>²<span>
X - length of the third side
361 = 169 + X</span>²<span>
X</span>²<span> = 361 - 169
X</span>²<span> = 192
X = 13.85 the length of third side rounded off to the nearest tenth is 13.9 cm</span>
Step-by-step explanation:
If the parabola has the form
(vertex form)
then its vertex is located at the point (h, k). Therefore, the vertex of the parabola

is located at the point (8, 6).
To find the length of the parabola's latus rectum, we need to find its focal length <em>f</em>. Luckily, since our equation is in vertex form, we can easily find from the focus (or focal point) coordinate, which is

where
is called the focal length or distance of the focus from the vertex. So from our equation, we can see that the focal length <em>f</em> is

By definition, the length of the latus rectum is four times the focal length so therefore, its value is

Answer:
9 tiles needed to fill
Step-by-step explanation:
16 - 7
Answer:
c
Step-by-step explanation:
plot your graph and then you will see there is no line which shows there is a correlation. they're too scattered
Answer:
d = 3/7 = 0.429
d = 1
Step-by-step explanation: