Answer:
6+18 pls give brainlest
Step-by-step explanation:
How to solve your problem
3(2+6)
Simplify
1
Distribute
3(2+6)
6+18
Solution
6+18
Answer:
answer is y^2-6y+9
Step-by-step explanation:
first take out the value of x from equation 1 which is x=(2-y)
then put the value of x in equation 2 u will get ur answer as y^2-6y+9
Answer:
10x
Step-by-step explanation:
Add the 6 and 4 the x stays the same.
For this case we have the following equation:

To clear w, we must follow the following steps:
1) The value of t multiplied by c pass to divide the other side of the equation:
2) the value of 1000 is passed to multiply to the other side of the equation:
Answer:
The cleared equation for w is:
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7