Answer:
69.79 mmHg is the pressure for the solution
Explanation:
Formula for vapor pressure lowering:
Vapor pressure of pure solvent(P°) - Vapor pressure of solution (P') = P° . Xm
Xm → Molar fraction of solute (moles of solute / Total moles)
Total moles = Moles of solute + Moles of solvent
Let's determine the moles:
50.36 g . 1mol/342 g = 0.147 moles of sugar
88.69 g. 1mol/ 18g = 4.93 moles of water
Total moles = 0.147 + 4.93 = 5.077 moles
Xm = 0.147 / 5.077 = 0.0289
If we replace data given in the formula:
71.88 mHg - P' = 71.88 mmHg . 0.0289 . 0.0289
P' = - (71.88 mmHg . 0.0289 - 71.88 mmHg)
P' = 69.79 mmHg
Mg3(PO4)2 - the molar mass would be 262g/mol, which is 100%
Atomic mass of Mg is 24, since we have 3Mg we multiply by 3 and get a mass of 72
262 : 100% = 72 : x%
x = 72*100 / 262
x = 27.5%
And do that for every element — get the molar mass of P and multiply by 2, use a ratio, and get the molar mass of O and multiply by 8 and use ratios :)
Those would be called indicators , simply google them and you should find many. I'll leave some examples "bromophenol blue" "Methyl red" and "phenol red".
Explanation:
The two ways that energy can be transferred are by doing work and by heat transfer.
Answer: 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal
Explanation:
To calculate the moles :
The balanced chemical equuation is:
According to stoichiometry :
4 moles of produce == 2 moles of
Thus 0.556 moles of will produce= of
Mass of
Thus 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal.