Answer:
The atom is oxidized is Ca.
Explanation:
- The oxidation-reduction reaction contains a reductant and an oxidant (oxidizing agent).
- The oxidation process is the process in which electrons are lost and produce positively charged ions.
- The reduction process is the process in which electrons is gained and negatively charge ions are produced.
- In the reaction of chlorine with calcium:
<em>Ca + Cl₂ → CaCl₂,</em>
Ca loses 2 electrons and is oxidized to Ca²⁺. (Ca <em>→</em> Ca²⁺ + 2e).
Cl is gains 2 electrons in "Cl₂, oxidation state zero" and is reduced to Cl⁻. (Cl₂ + 2e <em>→</em> 2Cl⁻).
Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.
Answer:
Mole fraction for solute = 0.1, or 10%
Molality = 6.24 mol/kg
Explanation:
22.3% by mass → In 100 g of solution, we have 22.3 g of HCOOH
Mass of solution = 100 g
Mass of solute = 22.3 g
Mass of solvent = 100 g - 22.3g = 77.7 g
Let's convert the mass to moles
22.3 g . 1mol/ 46 g = 0.485 moles
77.7 g. 1mol / 18 g = 4.32 moles
Total moles = 4.32 moles + 0.485 moles = 4.805 moles
Xm for solute = 0.485 / 4.805 = 0.100 → 10%
Molality → mol/ kg → we convert the mass of solvent to kg
77.7 g. 1 kg / 1000g = 0.0777 kg
0.485 mol / 0.0777 kg = 6.24 m
When sulfate (SO₄²⁻) serves as the electron acceptor at the end of a respiratory electron transport chain, the product is hydrogen sulfide (H₂S).
How sulfate acts as electon acceptor and electron donor?
- Sulfate (SO₄²⁻) is used as the electron acceptor in sulfate reduction, which results in the production of hydrogen sulfide (H2S) as a metabolic byproduct.
- Many Gram negative bacteria identified in the -Proteobacteria use sulfate reduction, which is a rather energy-poor process.
- Gram-positive organisms connected to Desulfotomaculum or the archaeon Archaeoglobus also utilise it.
- Electron donors are needed for sulfate reduction, such as hydrogen gas or the carbon molecules lactate and pyruvate (organotrophic reducers) (lithotrophic reducers).
Learn more about the Electron transport chain with the help of the given link:
brainly.com/question/24372542
#SPJ4
Answer:
The answer to your question is: letter A
Explanation:
A combination reaction is when there are two reactants that gives only one product.
a. 2SO2 + O2—> 2SO3 This is a combination reaction,
2 reactants gives one product.
b. Zn + Cu(NO3)2–>Zn(NO3)2 + Cu This is not a combination reaction,
it's a single replacement reaction.
c. 2H2O2–> 2H2O+O2 This is a decomposition reaction
d. AgNO3 + NaCl → AgCl+NaNO3 THis is a double replacement reaction.