The billiard balls without replacement.
Let's say there are 10 billiard balls 5 red and 5 blue.
If you pick a blue ball on the first pick you had a 5/10 chance
Now your chances of getting a red are only 5/9.
What happened on the first pick affects what happens on the second (making it dependent)
Answer:
es ovio
Step-by-step explanation:
investiga xd xd xd
<span>(f−g)</span><span>(x)</span>=<span>f<span>(x)</span></span>−<span>g<span>(x<span>)
plug every thing in </span></span></span>5<span>x2</span>−3−<span>(<span>x2</span>−4x−8<span>)
then solve </span></span>5<span>x2</span>−3−<span>x2</span>+4x+<span>8
</span>=4<span>x2</span>+4x+<span>5</span>
Answer:
x = 1
Step-by-step explanation:
Well the first step is to apply the distributive property:
4(3x - 1) is equal to (12x - 4). You DISTRIBUTE a '4' to what is inside the parentheses.
And btw, to make it easier, you can make 9 - x so that x is first. For example, (-x + 9). They're both the same thing, just written differently.
Your new equation is 12x - 4 = -x + 9. You want to now solve the equation.
Add the (-x) to both sides. It cancels out on the right side and you add it to 12x on the left side.
[If there's no number in front of a variable, you can always just put 1 in order to make it easier]
12x + 1x = 13x. Your new equation is 13x - 4 = 9. This should look very familiar. You simply add 4 to both sides. 9 + 4 = 13
Finally, 13x = 13. Divide 13 ÷ 13 to get 1.
x = 1