The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)
<span>Simplifying
2(10 + -13x) = -34x + 60
(10 * 2 + -13x * 2) = -34x + 60
(20 + -26x) = -34x + 60
Reorder the terms:
20 + -26x = 60 + -34x
Solving
20 + -26x = 60 + -34x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '34x' to each side of the equation.
20 + -26x + 34x = 60 + -34x + 34x
Combine like terms: -26x + 34x = 8x
20 + 8x = 60 + -34x + 34x
Combine like terms: -34x + 34x = 0
20 + 8x = 60 + 0
20 + 8x = 60
Add '-20' to each side of the equation.
20 + -20 + 8x = 60 + -20
Combine like terms: 20 + -20 = 0
0 + 8x = 60 + -20
8x = 60 + -20
Combine like terms: 60 + -20 = 40
8x = 40
Divide each side by '8'.
x = 5
Simplifying
x = 5</span>
Answer:
0
Step-by-step explanation:
I think is
4 x + 2y
256x + 16y