![\qquad\qquad\huge\underline{{\sf Answer}}♨](https://tex.z-dn.net/?f=%5Cqquad%5Cqquad%5Chuge%5Cunderline%7B%7B%5Csf%20Answer%7D%7D%E2%99%A8)
Since it's a Trapezoid with its non - parallel sides equal to one another,
![\qquad \sf \dashrightarrow \:\angle A + \angle P = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5Cangle%20A%20%2B%20%5Cangle%20P%20%3D%20180)
[ By forming co - interior angle pair ]
![\qquad \sf \dashrightarrow \:\angle A +100 = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5Cangle%20A%20%2B100%20%3D%20180)
![\qquad \sf \dashrightarrow \:\angle A = 180 - 100](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5Cangle%20A%20%3D%20180%20-%20100)
![\qquad \sf \dashrightarrow \:\angle A = 80](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5Cangle%20A%20%3D%2080%20)
Now, similarly,
![\qquad \sf \dashrightarrow \:\angle A + \angle R = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5Cangle%20A%20%2B%20%5Cangle%20R%20%3D%20180)
![\qquad \sf \dashrightarrow \: \angle R + 80 = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%5Cangle%20R%20%2B%2080%20%3D%20180)
![\qquad \sf \dashrightarrow \: \angle R = 100](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%5Cangle%20R%20%20%3D%20100)
Similarly,
![\qquad \sf \dashrightarrow \angle K + \angle R = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5Cangle%20K%20%2B%20%5Cangle%20R%20%3D%20180)
![\qquad \sf \dashrightarrow \angle K + 100 = 180](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5Cangle%20K%20%2B%20100%20%3D%20180)
![\qquad \sf \dashrightarrow \angle K = 80](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5Cangle%20K%20%20%3D%2080)
Answer:
40 problems in 100 minutes
Step-by-step explanation:
This is a ratio problem.
You first divide 30 minutes by three to get how many problems she can do in 10 minutes. What you do to one side you do to the other side. So then, you should have 4 problems in 10 minute. Then, you multiply 10 by 10 and 4 by 10 to get 40 problems in 100 minutes.
Answer: 6 games.
Step-by-step explanation:
If you multiply 6 by 18.08, you will get 108.48.
If you multiply 6 by 6 (Wayne's payment) plus what Wayne bought for the soccer season ticket, it will all add up to 108.48.