Check the picture below.
so let's find the lengths of those two sides in red, since are the length and width of the rectangle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{6})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[-3-(-6)]^2+[6-3]^2}\implies d=\sqrt{(-3+6)^2+(6-3)^2} \\\\\\ d=\sqrt{9+9}\implies \boxed{d=\sqrt{18}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-3%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-3%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286-3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B9%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B18%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1})~\hfill d=\sqrt{[-2-(-6)]^2+[-1-3]^2} \\\\\\ d=\sqrt{(-2+6)^2+(-1-3)^2}\implies d=\sqrt{16+16}\implies \boxed{d=\sqrt{32}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{(\sqrt{18})(\sqrt{32})}\implies \sqrt{18\cdot 32}\implies \sqrt{576}\implies 24](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29~%5Chfill%20d%3D%5Csqrt%7B%5B-2-%28-6%29%5D%5E2%2B%5B-1-3%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%28-2%2B6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B16%2B16%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B32%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7B%28%5Csqrt%7B18%7D%29%28%5Csqrt%7B32%7D%29%7D%5Cimplies%20%5Csqrt%7B18%5Ccdot%2032%7D%5Cimplies%20%5Csqrt%7B576%7D%5Cimplies%2024)
Answer:
-3.09 per hour
Step-by-step explanation:
if you mean that it went down from 0° to -131.5° in 42.5 hours, divide -131.5 by 42.5 (-131.5/42.5) which gives 3.09
Answer:
An acute angle ("acute" meaning "small") is an angle smaller than a right angle. The range of an acute angle is between 0 and 90 degrees.
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle.
Protractor: an instrument for measuring angles, typically in the form of a flat semicircle marked with degrees along the curved edge.
Degrees: a unit of measurement of angles, one three-hundred-and-sixtieth of the circumference of a circle.
Right Angel: an angle of 90°, as in a corner of a square or at the intersection of two perpendicular straight lines.
Straight Angle: an angle of 180°.
Step-by-step explanation:
Answer:
Step-by-step explanation:
The given question is that the volume of a cube depends on the length of its sides.This can be written in function notation as v(s). What is the best interpretation of v(3)=27.
Solution:
According to the question the volume of a cube depends on the length of its sides. According to the statement we will apply the formula of volume of a cube.
V(s)=s³
In this question we have given s=3ft.
So, we will put the value of 's' in the formula.
V(s)=s³
V(3)=3³
Multiply 3 three times to get the answer.
V(3)=3*3*3
V(3)=27 ft³
This means that the cube has a volume of 27ft³ with the length of its sides 3ft....
Answer:
the answe is 10.30
Step-by-step explanation:
im also from k12 lol