We can solve this problem using separation of variables.
Then apply the initial conditions
EXPLANATION
We were given the first order differential equation
![\frac{dT}{dt}=k(T-a)](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%3Dk%28T-a%29)
We now separate the time and the temperature variables as follows,
![\frac{dT}{T-a}=kdt](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7BT-a%7D%3Dkdt)
Integrating both sides of the differential equation, we obtain;
![ln(T-a)=kt +c](https://tex.z-dn.net/?f=ln%28T-a%29%3Dkt%20%2Bc)
This natural logarithmic equation can be rewritten as;
![T-a=e^{kt +c}](https://tex.z-dn.net/?f=T-a%3De%5E%7Bkt%20%2Bc%7D)
Applying the laws of exponents, we obtain,
![T-a=e^{kt}\times e^{c}](https://tex.z-dn.net/?f=T-a%3De%5E%7Bkt%7D%5Ctimes%20e%5E%7Bc%7D)
![T-a=e^{c}e^{kt}](https://tex.z-dn.net/?f=T-a%3De%5E%7Bc%7De%5E%7Bkt%7D)
We were given the initial conditions,
![T(0)=4](https://tex.z-dn.net/?f=T%280%29%3D4)
Let us apply this condition to obtain;
![4-20=e^{c}e^{k(0)}](https://tex.z-dn.net/?f=4-20%3De%5E%7Bc%7De%5E%7Bk%280%29%7D)
![-16=e^{c}](https://tex.z-dn.net/?f=-16%3De%5E%7Bc%7D)
Now our equation, becomes
![T-a=-16e^{kt}](https://tex.z-dn.net/?f=T-a%3D-16e%5E%7Bkt%7D)
or
![T=a-16e^{kt}](https://tex.z-dn.net/?f=T%3Da-16e%5E%7Bkt%7D)
When we substitute a=20,
we obtain,
![T=20-16e^{kt}](https://tex.z-dn.net/?f=T%3D20-16e%5E%7Bkt%7D)
b) We were also given that,
![T(5)=8](https://tex.z-dn.net/?f=T%285%29%3D8)
Let us apply this condition again to find k.
![8=20-16e^{5k}](https://tex.z-dn.net/?f=8%3D20-16e%5E%7B5k%7D)
This implied
![-12=-16e^{5k}](https://tex.z-dn.net/?f=-12%3D-16e%5E%7B5k%7D)
![\frac{-12}{-16}=e^{5k}](https://tex.z-dn.net/?f=%5Cfrac%7B-12%7D%7B-16%7D%3De%5E%7B5k%7D)
![\frac{3}{4}=e^{5k}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B4%7D%3De%5E%7B5k%7D)
We take logarithm to base e of both sides,
![ln(\frac{3}{4})=5k](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B3%7D%7B4%7D%29%3D5k)
This implies that,
![\frac{ln(\frac{3}{4})}{5}=k](https://tex.z-dn.net/?f=%5Cfrac%7Bln%28%5Cfrac%7B3%7D%7B4%7D%29%7D%7B5%7D%3Dk)
![k=-0.2877](https://tex.z-dn.net/?f=k%3D-0.2877)
After 15 minutes, the temperature will be,
![T=20-16e^{-0.2877\times 15}](https://tex.z-dn.net/?f=T%3D20-16e%5E%7B-0.2877%5Ctimes%2015%7D)
![T=20-0.21376](https://tex.z-dn.net/?f=T%3D20-0.21376)
![T=19.786](https://tex.z-dn.net/?f=T%3D19.786)
After 15 minutes, the temperature is approximately 20°C