A, C, and D. Hope this helps!
C. x³-4x²-16x+24.
In order to solve this problem we have to use the product of the polynomials where each monomial of the first polynomial is multiplied by all the monomials that form the second polynomial. Afterwards, the similar monomials are added or subtracted.
Multiply the polynomials (x-6)(x²+2x-4)
Multiply eac monomial of the first polynomial by all the monimials of the second polynomial:
(x)(x²)+x(2x)-(x)(4) - (6)(x²) - (6)(2x) - (6)(-4)
x³+2x²-4x -6x²-12x+24
Ordering the similar monomials:
x³+(2x²-6x²)+(-4x - 12x)+24
Getting as result:
x³-4x²-16x+24
Answer:
-2
Step-by-step explanation:
First, let's put this in slope-intercept form:
-5y-3x=10
5y = -3x - 10
y = (-3/5)x - 2
The y-intercept is -2.
The correct question is
Which is the best approximation to a solution of the equation
e^(2x) = 2e^{x) + 3?
we have that
e^(2x) = 2e^{x) + 3-----------> e^(2x)- 2e^{x) - 3=0
the term
e^(2x)- 2e^{x)----------> (e^x)²-2e^(x)*(1)+1²-1²------> (e^x-1)²-1
then
e^(2x)- 2e^{x) - 3=0--------> (e^x-1)²-1-3=0------> (e^x-1)²=4
(e^x-1)=2--------> e^x=3
x*ln(e)=ln(3)---------> x=ln(3)
ln(3)=1.10
hence
x=1.10
the answer is x=1.10
Answer:
Total amount of fruits
40 apples and 15 oranges
Step-by-step explanation:
Is there answer choices? Without context I will suggest
Total amount of fruits
40 apples and 15 oranges
Anything with 40 being added to an amount of 15 to get a total of 55