
x = 1.50 + y
*40x + 40y = 940
40 (1.50 + y) + 40y = 940
60 + 40y +40y = 940
60 + 80y = 940
80y = 940 - 60
80y = 880
y = 880/80
y = 11
*x - y = 1.50
x - 11 = 1.50
x = 1.50 + 11
x = 12.5
x=DAVID
Y=PETER
<em>θ</em> is given to be in the fourth quadrant (270° < <em>θ</em> < 360°) for which sin(<em>θ</em>) < 0 and cos(<em>θ</em>) > 0. This means
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1 ==> sin(<em>θ</em>) = -√[1 - cos²(<em>θ</em>)] = -3/5
Now recall the double angle identity for sine:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
==> sin(2<em>θ</em>) = 2 (-3/5) (4/5) = -24/25
Basically john made x baskets
jaleel made 3 times x or 3x baskets
so if Jaleel to John then
3x:1x=3:1
if John to Jaleel then
1x:3x=1:3
the ratio is 1:3 or 3:1 depending on who is on which side
1 In general, given
a
x
2
+
b
x
+
c
ax
2
+bx+c, the factored form is:
a
(
x
−
−
b
+
b
2
−
4
a
c
2
a
)
(
x
−
−
b
−
b
2
−
4
a
c
2
a
)
a(x−
2a
−b+
b
2
−4ac
)(x−
2a
−b−
b
2
−4ac
)
2 In this case,
a
=
3
a=3,
b
=
−
54
b=−54 and
c
=
343
c=343.
3
(
y
−
54
+
(
−
54
)
2
−
4
×
3
×
343
2
×
3
)
(
y
−
54
−
(
−
54
)
2
−
4
×
3
×
343
2
×
3
)
3(y−
2×3
54+
(−54)
2
−4×3×343
)(y−
2×3
54−
(−54)
2
−4×3×343
)
3 Simplify.
3
(
y
−
54
+
20
3
ı
6
)
(
y
−
54
−
20
3
ı
6
)
3(y−
6
54+20
3
)(y−
6
54−20
3
)
4 Factor out the common term
2
2.
3
(
y
−
2
(
27
+
10
3
ı
)
6
)
(
y
−
54
−
20
3
ı
6
)
3(y−
6
2(27+10
3
)
)(y−
6
54−20
3
)
5 Simplify
2
(
27
+
10
3
ı
)
6
6
2(27+10
3
)
to
27
+
10
3
ı
3
3
27+10
3
.
3
(
y
−
27
+
10
3
ı
3
)
(
y
−
54
−
20
3
ı
6
)
3(y−
3
27+10
3
)(y−
6
54−20
3
)
6 Factor out the common term
2
2.
3
(
y
−
27
+
10
3
ı
3
)
(
y
−
2
(
27
−
10
3
ı
)
6
)
3(y−
3
27+10
3
)(y−
6
2(27−10
3
)
)
7 Simplify
2
(
27
−
10
3
ı
)
6
6
2(27−10
3
)
to
27
−
10
3
ı
3
3
27−10
3
.
3
(
y
−
27
+
10
3
ı
3
)
(
y
−
27
−
10
3
ı
3
)
3(y−
3
27+10
3
)(y−
3
27−10
3
I hope this help you
Answer: $5,676.87
Step-by-step explanation:
Hi, to answer this question we have to apply the compounded interest formula:
A = P (1 + r/n) nt
Where:
A = Future value of investment (principal + interest)
P = Principal Amount
r = Nominal Interest Rate (decimal form, 6.45/100= 0.0645)
n= number of compounding periods in each year (2)
Replacing with the values given
A = 5,000 (1+ 0.0645/2)^ (2x2)
A = 5,000 (1.03225)^4
A = $5,676.87