The vertex (minimum) of the quadratic ax² +bx +c is located at x=-b/(2a). This means the minimum value of f(x) will be found at x = -3/(2*1) = -1.5.
Since the vertex of the quadratic is less than 0, the maximum value of the quadratic will be found at x=2, the end of the interval farthest from the vertex.
On the given interval, ...
the absolute minimum value of f is f(-1.5) = ln(1.75) ≈ 0.559616
the absolute maximum value of f is f(2) = ln(14) ≈ 2.639057
Answer:
A sample size of 35 is needed.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the width W as such

In which
is the standard deviation of the population and n is the size of the sample.
How large must the sample size be if the width of the 95% interval for mu is to be 1.0:
We need to find n for which W = 1.
We have that
, then
. So





Rounding up
A sample size of 35 is needed.
Answer:
The circumference is 25.13
Step-by-step explanation:
Formula: C=2πr
multiply the radius by 2 and pi