Given the table below representing the number of hours of television nine Math II class students watched the night before a big test on
triangles
along with the grades they each earned on that test.
![\begin{center} \begin{tabular} {|c|c|} Hours Spent Watching TV & Grade on Test (out of 100) \\ [1ex] 4 & 71 \\ 2 & 81 \\ 4 & 62 \\ 1 & 86 \\ 3 & 77 \\ 1 & 93 \\ 2 & 84 \\ 3 & 80 \\ 2 & 85 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%0A%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AHours%20Spent%20Watching%20TV%20%26%20Grade%20on%20Test%20%28out%20of%20100%29%20%20%5C%5C%20%5B1ex%5D%0A4%20%26%2071%20%5C%5C%20%0A2%20%26%2081%20%5C%5C%20%0A4%20%26%2062%20%5C%5C%20%0A1%20%26%2086%20%5C%5C%20%0A3%20%26%2077%20%5C%5C%20%0A1%20%26%2093%20%5C%5C%20%0A2%20%26%2084%20%5C%5C%20%0A3%20%26%2080%20%5C%5C%20%0A2%20%26%2085%0A%5Cend%7Btabular%7D%0A%5Cend%7Bcenter%7D)
Let the number the number of hours of television each of the students watched the night before the test be x while the grades they each earned on that test be y.
We use the following table to find the equation of the line of best fit of the regression analysis of the data.
![\begin{center} \begin{tabular} {|c|c|c|c|} x & y & x^2 & xy \\ [1ex] 4 & 71 & 16 & 284 \\ 2 & 81 & 4 & 162 \\ 4 & 62 & 16 & 248 \\ 1 & 86 & 1 & 86 \\ 3 & 77 & 9 & 231 \\ 1 & 93 & 1 & 93 \\ 2 & 84 & 4 & 168 \\ 3 & 80 & 9 & 240 \\ 2 & 85 & 4 & 170 \\ [1ex]\Sigma x=22 & \Sigma y=719 & \Sigma x^2=64 & \Sigma xy=1,682 \end{tabular} \end{center}](https://tex.z-dn.net/?f=%5Cbegin%7Bcenter%7D%20%5Cbegin%7Btabular%7D%20%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%20x%20%26%20y%20%26%20x%5E2%20%26%20xy%20%5C%5C%20%5B1ex%5D%204%20%26%2071%20%26%2016%20%26%20284%20%5C%5C%202%20%26%2081%20%26%204%20%26%20162%20%5C%5C%204%20%26%2062%20%26%2016%20%26%20248%20%5C%5C%201%20%26%2086%20%26%201%20%26%2086%20%5C%5C%203%20%26%2077%20%26%209%20%26%20231%20%5C%5C%201%20%26%2093%20%26%201%20%26%2093%20%5C%5C%202%20%26%2084%20%26%204%20%26%20168%20%5C%5C%203%20%26%2080%20%26%209%20%26%20240%20%5C%5C%202%20%26%2085%20%26%204%20%26%20170%20%5C%5C%20%5B1ex%5D%5CSigma%20x%3D22%20%26%20%5CSigma%20y%3D719%20%26%20%5CSigma%20x%5E2%3D64%20%26%20%5CSigma%20xy%3D1%2C682%20%5Cend%7Btabular%7D%20%5Cend%7Bcenter%7D)
Recall that the equation of the line of best fit of a regression analysis is given by

where:

and


Thus, the equation of the line of best fit is given by y = 97.95 - 7.391x
<span>A student that watched 1.5 hours of TV will have a score given by
y = 97.95 - 7.391(1.5) = 97.95 - 11.0865 = 86.8635
Therefore, </span><span>a student’s score if he/she watched 1.5 hours of TV to the nearest whole number is 87.</span>
Answer:
72/149
Step-by-step explanation:
Just to clarify, the curly braces mean the same thing as normal parenthesis.
(12 + 5^2) = (12 + 25) = 37
(-7-15)^2 = (-22)^2 = 484
6^3 = 216
(12 + 5^2) - (-7-15)^2 = 37 - 484 = 447
6^3 / ((12 + 5^2) - (-7 - 15)^2) = 216 / 447 = 72/149
The answer is 92,776 because 10 times as much as 70 is 700 which gives the answer for the hundreds position.
A because that is where they cross
John bought 18 erasers.
Explanation: He has $6.00
He spends $3.12 on notebooks
Then you do $6.00 - $3.12 and you get $2.88
If it’s ¢16 per eraser and he has no money left over after buying erasers than you would divide $2.88 by $0.16 which turns into 288 divided by 16 which comes out to 18.
Therefor John bought 18 erasers.