Answer:
(0,5)
Step-by-step explanation:
To find the y-intercept, substitute in 0 for x and solve for y.
y=x^2 + 3x + 5
y=(0)^2 + 3(0) +5
y=0+0+5
y=5
Since there is no x coordinate for a y-intercept, the answer is (0,5)
11 bottles are needed to fill a 16 liter jug
<em><u>Solution:</u></em>
Given that, there is a 16 liter jug
There are
liters of bottle
<em><u>Let us first convert the mixed fraction to improper fraction</u></em>
Multiply the whole number part by the fraction's denominator.
Add that to the numerator.
Then write the result on top of the denominator.

Thus the bottle is of 1.5 liter
We have to find the number of 1.5 liter bottles needed to fill 16 liter jug
Divide 16 by 1.5 to get result

Thus 11 bottles are needed to fill a 16 liter jug
Answer:

Step-by-step explanation:
Vertically Opposite Angles are equal..
so,

Subtract these 2 equations,
5x-5x +3y-y = -4-6
2y = -10
y = -5
-5 is your answer.
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).