Answer:
the third answer
Step-by-step explanation:
c = 4
c + 1 = 1 + 1 + 1 + 1 + 1
4 + 1 = 1 + 1 + 1 + 1 + 1
5 = 5
Answer:
-3 , 9
Step-by-step explanation:
Sum = - 6
Product = -27
Factors = 3, -9
x² - 6x-27 = 0
x² + 3x - 9x - 9*3 = 0
x(x + 3) - 9(x + 3) = 0
(x + 3) (x - 9) = 0
x +3 = 0 ; x - 9 = 0
x = - 3 ; x = 9
Solution: x = -3 , 9
Well, the first line has a slope of -3, and runs through 0, -1.
a line parallel to that one, will have the same exact slope of -3.
now, we know about this other parallel line that it runs through -3,1, and of course, since is parallel, it has a slope of -3
A) There are a number of ways to compute the determinant of a 3x3 matrix. Since k is on the bottom row, it is convenient to compute the cofactors of the numbers on the bottom row. Then the determinant is ...
1×(2×-1 -3×1) -k×(3×-1 -2×1) +2×(3×3 -2×2) = 5 -5k
bi) Π₁ can be written using r = (x, y, z).
Π₁ ⇒ 3x +2y +z = 4
bii) The cross product of the coefficients of λ and μ will give the normal to the plane. The dot-product of that with the constant vector will give the desired constant.
Π₂ ⇒ ((1, 0, 2)×(1, -1, -1))•(x, y, z) = ((1, 0, 2)×(1, -1, -1))•(1, 2, 3)
Π₂ ⇒ 2x +3y -z = 5
c) If the three planes form a sheath, the ranks of their coefficient matrix and that of the augmented matrix must be 2. That is, the determinant must be zero. The value of k that makes the determinant zero is found in part (a) to be -1.
A common approach to determining the rank of a matrix is to reduce it to row echelon form. Then the number of independent rows becomes obvious. (It is the number of non-zero rows.) This form for k=-1 is shown in the picture.
Answer: Original Price: $5
Step-by-step explanation:
x+0.2x=6
1.2x=6
x=5
Original Price: $5