Answer:
Yes it does
Step-by-step explanation:
(125/35)=(25/7)
((125/5)/(35/5))=(25/7)
(25/7)=(25/7)
Answer: d) 14
Step-by-step explanation:
Equation of a line passing through (a,b) and (c,d):

Equation of a line passing through (2, 18) and (–3, 8):

Comparing resulting equation
to
, we get value of b= 14.
Hence, correct option is d) 14
Answer: Option C) Raj forgot the negative when substituting -15+9x for y.
Solution:
(1) 9x-y=15
(2) 2x+8y=28
Isolating y in the first equation. Subtracting 9x both sides of the equation:
(1) 9x-y-9x=15-9x
Subtracting:
(1) -y=15-9x
Multiplying both sides of the equation by -1:
(1) (-1)(-y)=(-1)(15-9x)
(1) y=-15+9x
Then Raj found the value of y. It's not option D.
Substitutng y by -15+9x in the second equation:
(2) 2x+8(-15+9x)=28
Then option C) is the answer: Raj forgot the negative when substituting -15+9x for y.
Eliminating the parentheses applying the distributive property in the multiplication:
(2) 2x-120+72x=28
Adding similar terms:
(2) 74x-120=28
Solving for x. Adding 120 both sides of the equation:
(2) 74x-120+120=28+120
Adding:
(2) 74x=148
Dividing both sides of the equation by 74:
(2) 74x/74=148/74
Dividing:
(2) x=2
Solving for y: Replacing x by 2 in the first equation:
(1) y=-15+9x
(1) y=-15+9(2)
Multiplying:
(1) y=-15+18
Subtracting:
(1) y=3
Answer:
6x*2-3x*2y
4p-18
Step-by-step explanation:
<h3>Given</h3>
A(-3, 1), B(4, 5)
<h3>Find</h3>
coordinates of P on AB such that AP/PB = 5/2
<h3>Solution</h3>
AP/PB = 5/2 . . . . . desired result
2AP = 5PB . . . . . . multiply by 2PB
2(P-A) = 5(B-P) . . . meaning of the above
2P -2A = 5B -5P . . eliminate parentheses
7P = 2A +5B . . . . . collect P terms
P = (2A +5B)/7 . . . .divide by the coefficient of P
P = (2(-3, 1) +5(4, 5))/7 . . . . substitute the given points
P = (-6+20, 2+25)/7 . . . . . . simplify
P = (2, 3 6/7)