Answer:
{f|0 ≤ f(x)}; x² - 4x + 5
Step-by-step explanation:
To find the Quadratic Equation, plug the <em>vertex</em> into the Vertex Equation FIRST, <em>y = </em><em>a</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>h</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>k</em>, where (<em>h</em><em>,</em><em> </em><em>k</em>) → (<em>2,</em><em> </em><em>1</em>)<em> </em>is the vertex, plus, -h gives you the OPPOSITE terms of what they really are, and k gives you the EXACT terms of what they really are: (x - 2)² + 1. Doing this will give you the Quadratic Equation of <em>x² - 4x + 5</em>. You understand now?
I am joyous to assist you anytime.
that would be the letter d :)
each value of x has a unique value of y
Answer:
what is the question and the choices and ill answer this
Step-by-step explanation:
Answer:
not really sure can’t see the problem to good but C?
Step-by-step explanation:
hope this helped tho. cross multiple (btw if you search it on google it will help you)
Let
x = wristbands
y = headbands
We then have the following inequations:
2x + 3y> = 50 x> = 5 The graph that represents the solution for this system of inequations is shown in the attached image.
The set of solutions is the shaded region.