1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
3 years ago
15

11

Mathematics
1 answer:
Cloud [144]3 years ago
8 0

Answer:

force

Step-by-step explanation:

it's literally asking you for the force needed to push the crate lol.

You might be interested in
Linear System Word Problem - Animals
Margaret [11]

Answer:

There were 15 birds at the shelter on Monday

Step-by-step explanation: 15 birds x 5$ =75$ and 8 cats x 6$=48$ 75$ + 48$=123$  


4 0
3 years ago
Simplify seven square root of three end root minus four square root of six end root plus square root of forty eight end root min
Cloud [144]

7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54} simplified as 11\sqrt{3}- 7\sqrt{6} or 1.909 .

<u>Step-by-step explanation:</u>

We need to Simplify seven square root of three end root minus four square root of six end root plus square root of forty eight end root minus square root of fifty four. Which is equivalent to 7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54} :

7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54}

⇒ 7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{44}

⇒ 7\sqrt{3}- 4\sqrt{6} + \sqrt{16(3)} - \sqrt{9(6)}

⇒ 7\sqrt{3}- 4\sqrt{6} + 4\sqrt{(3)} - 3\sqrt{(6)}

⇒ 11\sqrt{3}- 4\sqrt{6}- 3\sqrt{(6)}

⇒ 11\sqrt{3}- 7\sqrt{6}

\sqrt{3} = 1.732 , \sqrt{6} = 2.449

⇒ 11(1.723)- 7(2.449)

⇒ 1.909

Therefore, 7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54} simplified as 11\sqrt{3}- 7\sqrt{6} or 1.909 .

6 0
3 years ago
Please help with this problem.
larisa86 [58]

Answer:

60°, 120°

Step-by-step explanation:

\frac{ {tan}^{2}x }{2}  - 2 {cos}^{2}x = 1 \\   \\  \frac{ {tan}^{2}x  - 4{cos}^{2}x }{2} = 1 \\  \\ {tan}^{2}x  - 4{cos}^{2}x = 2 \\  \\  \frac{{sin}^{2}x}{{cos}^{2}x} - 4{cos}^{2}x = 2 \\  \\ \frac{{sin}^{2}x - 4{cos}^{4}x}{{cos}^{2}x}  = 2 \\  \\ {sin}^{2}x - 4{cos}^{4}x = 2{cos}^{2}x \\  \\ 4{cos}^{4}x  + 2{cos}^{2}x - {sin}^{2}x = 0  \\  \\ 4{cos}^{4}x  + 2{cos}^{2}x  +  {cos}^{2}x  - 1= 0  \\  \\ 4{cos}^{4}x  + 3{cos}^{2}x   - 1= 0  \\  \\ 4{cos}^{4}x  + 4{cos}^{2}x -   {cos}^{2}x - 1= 0  \\  \\4{cos}^{2}x({cos}^{2}x + 1) - 1({cos}^{2}x + 1) = 0 \\  \\ ({cos}^{2}x + 1)(4{cos}^{2}x - 1) = 0 \\  \\ ({cos}^{2}x + 1) = 0 \: or \: (4{cos}^{2}x - 1) = 0 \\  \\ {cos}^{2}x =  - 1 \: or \: 4{cos}^{2}x = 1 \\  \\ {cos}x = \sqrt{ - 1}  \: which \: is \: not \: possible \\  \therefore \: {cos}^{2}x =  \frac{1}{4}  \\  \\ \therefore \: {cos}x =   \pm\frac{1}{2} \\  \\ \therefore \: {cos}x =   \frac{1}{2}  \: or \: {cos}x =    - \frac{1}{2}  \\  \\ \therefore \: {cos}x =   {cos}60 \degree \: or \: {cos}x =     {cos}120 \degree \\  \\ \therefore \:x = 60 \degree \:  \: or  \: \: x  = 120 \degree

6 0
3 years ago
Please help me help this is my last question please please please if you help me I’ll help you
Pavlova-9 [17]

Answer:12

Step-by-step explanation: 3 x (2x2)= 3x4= 12

4 0
2 years ago
Read 2 more answers
Which of the following Questions.
maw [93]

Answer:

Okay so I would say d because

Step-by-step explanation:

because they all equal less than 1/4

4 0
2 years ago
Other questions:
  • Sophia earns $12 per hour working in an office plus $5 dollars for parking fees. She uses the function e = 12h + 5 to represents
    12·1 answer
  • Someone help me quick!!
    7·1 answer
  • Item Value
    7·1 answer
  • Match the values based on parallelogram ABCD, shown in the figure.
    7·1 answer
  • If a(x)=3x+1 and b(x)=square root of x-4, what is the domain of (b•a)(x)
    11·1 answer
  • What is the value of z?
    14·2 answers
  • Helpssbwjmeekndhshhsbdh
    15·1 answer
  • Evaluate the following equation for the given x value. Round your answer to
    9·1 answer
  • Please help ill give brainliest
    14·1 answer
  • Please explain how to do it
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!