1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
6

What is the energy of a photon with a frequency of 1.14 x 10^34 Hz? Remember that Planck's constant is 6.63 x 10^-34 Js. Round y

our answer to two decimal places and put a space between your number and unit.
Physics
1 answer:
suter [353]3 years ago
6 0

Answer:

7.56 Hz

Explanation:

6.63E-34 x 1.14E34 = 7.5582

You might be interested in
An object is dropped and falls freely to the ground with an acceleration of g. If it is thrown upward at an angle instead, its a
Savatey [412]

Answer:

g

Explanation:

if an object is thrown upward or at any angle, the acceleration acting on that object is the same as acceleration due to gravity which always acts towards the vertically downwards direction because there is no acceleration or the force acting on the object in horizontal direction.

Thus, the acceleration is same as acceleration due to gravity g.  

5 0
4 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
3 years ago
Atomic nuclei of almost all elements consist of
wolverine [178]
<h2>Answer: protons and neutrons. </h2>

The atomic nuclei of almost all elements consist of protons and neutrons.

The nucleus of an atom has very small dimensions. However, it <u>occupies its central part and concentrates more than 99% of its total mass. </u>

It is in the nucleus that the protons (positive charge) and neutrons (neutral charge) are found.

4 0
4 years ago
Larry drops a 5kg ball off of a building. The ball hits the ground 4.7s later. How tall is the building?
musickatia [10]

Explanation:

Given:

v₀ = 0 m/s

a = 9.8 m/s²

t = 4.7 s

Find: Δy

Δy = v₀ t + ½ at²

Δy = (0 m/s) (4.7 s) + ½ (9.8 m/s²) (4.7 s)²

Δy ≈ 110 m

8 0
3 years ago
Why would a flat sheet of paper and a wad of paper with the same mass not fall through the air at the same rate?
Gelneren [198K]
The flat sheet of paper has more surface area than the crumpled ball
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the correct order of events at a power plant?
    11·2 answers
  • A bug zapper consists of two metal plates connected to a high-voltage power supply. The voltage between the plates is set to giv
    13·1 answer
  • If a tree falls in the middle of the woods and nobody is around to hear it, does it make a sound?
    5·2 answers
  • William tell shoots an apple from his son's head. the speed of the 130-g arrow just before it strikes the apple is 24.8 m/s, and
    13·1 answer
  • What is direct current? In which direction does current go according to the electron flow convention?
    6·1 answer
  • 2.00 W/m2 passes through the pupil of one of your eyes and eventually falls on your retina. The radius of the pupil is controlle
    14·1 answer
  • Consider going around a horizontal turn to the right. If the coaster suddenly slipped off the track, what path would it follow?
    13·1 answer
  • Understands how formulas are used​
    14·2 answers
  • What is one disadvantage of sending information over long distances
    8·2 answers
  • the gravitational force between two masses at distance of 2.5×10^6 metre is 250 Newton . what should be distance between them to
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!