The work done is equal to the change in potential energy which is:
P.E = mgh
P.E = 500 x 9.81 x 15
P.E = 73,575 J
Power = work / time
Power = 73,575 / 20
Power = 3,700 Watts
Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values


Answer:
20 Joules
Explanation:
Work is done whenever a force moves a body through a certain distance in the direction of the force. So, work done is the product of force and distance moved.
Therefore, we have;
Work done = Force x distance
i.e Wd = Fs
Given that: F = 20 N and s = 1 m, then;
Wd = 20 N x 1 m
= 20 Nm
The work done by the father is 20 Joules(Nm).
Answer:
Explanation:
Momentum conservation

Kinetic energy conservation

Solve the system
Lighting flows around the outside of a truck, and the majority of the current flows from the cars metal cage into the ground below. It's not very safe to be in a car or truck during bad weather.