D
The first place after the decimal represents the tenths place, the second place represents the 100ths place and so on.
Answer:
38.60mm
Step-by-step explanation:
Step one:
Given data
We are given that the dimension of the triangles are length 23 mm and 31 mm
Let us assume that the triangle is a right angle triangle
Step two:
Applying the Pythagoras theorem we can find the third as

square both sides
z= √ 1490
z= 38.60mm
Hence a possible dimension of the third side is 38.60mm
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
B is equal to 51 because angles in a right angle add up to 90
Answer:
14
Step-by-step explanation: